5 resultados para Fabrication process
em Digital Commons at Florida International University
Resumo:
The objective of this research was to find Young's elastic modulus for thin gold films at room and cryogenic temperatures based on the flexional model which has not been previously attempted. Electrical Sonnet simulations and numerical methods using Abacus for the mechanical responses were employed for this purpose. A RF MEM shunt switch was designed and a fabrication process developed in house. The switch is composed of a superconducting YBa2 Cu3O7 coplanar waveguide structure with an Au bridge membrane suspended above an area of the center conductor covered with BaTiO3 dielectric. The Au membrane is actuated by the electrostatic attractive force acting between the transmission line and the membrane when voltage is applied. The value of the actuation force will greatly depend on the switch pull-down voltage and on the geometry and mechanical properties of the bridge material. Results show that the elastic modulus for Au thin film can be 484 times higher at cryogenic temperature than it is at room temperature. ^
Resumo:
Integrated on-chip optical platforms enable high performance in applications of high-speed all-optical or electro-optical switching, wide-range multi-wavelength on-chip lasing for communication, and lab-on-chip optical sensing. Integrated optical resonators with high quality factor are a fundamental component in these applications. Periodic photonic structures (photonic crystals) exhibit a photonic band gap, which can be used to manipulate photons in a way similar to the control of electrons in semiconductor circuits. This makes it possible to create structures with radically improved optical properties. Compared to silicon, polymers offer a potentially inexpensive material platform with ease of fabrication at low temperatures and a wide range of material properties when doped with nanocrystals and other molecules. In this research work, several polymer periodic photonic structures are proposed and investigated to improve optical confinement and optical sensing. We developed a fast numerical method for calculating the quality factor of a photonic crystal slab (PhCS) cavity. The calculation is implemented via a 2D-FDTD method followed by a post-process for cavity surface energy radiation loss. Computational time is saved and good accuracy is demonstrated compared to other published methods. Also, we proposed a novel concept of slot-PhCS which enhanced the energy density 20 times compared to traditional PhCS. It combines both advantages of the slot waveguide and photonic crystal to localize the high energy density in the low index material. This property could increase the interaction between light and material embedded with nanoparticles like quantum dots for active device development. We also demonstrated a wide range bandgap based on a one dimensional waveguide distributed Bragg reflector with high coupling to optical waveguides enabling it to be easily integrated with other optical components on the chip. A flexible polymer (SU8) grating waveguide is proposed as a force sensor. The proposed sensor can monitor nN range forces through its spectral shift. Finally, quantum dot - doped SU8 polymer structures are demonstrated by optimizing spin coating and UV exposure. Clear patterns with high emission spectra proved the compatibility of the fabrication process for applications in optical amplification and lasing.
Resumo:
The objective of this research was to find Young's elastic modulus for thin gold films at room and cryogenic temperatures based on the flexional model which has not been previously attempted. Electrical Sonnet simulations and numerical methods using Abacus for the mechanical responses were employed for this purpose. A RF MEM shunt switch was designed and a fabrication process developed in house. The switch is composed of a superconducting YBa2Cu3O7 coplanar waveguide structure with an Au bridge membrane suspended above an area of the center conductor covered with BaTiO3 dielectric. The Au membrane is actuated by the electrostatic attractive force acting between the transmission line and the membrane when voltage is applied. The value of the actuation force will greatly depend on the switch pull-down voltage and on the geometry and mechanical properties of the bridge material. Results show that the elastic modulus for Au thin film can be 484 times higher at cryogenic temperature than it is at room temperature.
Resumo:
Currently the data storage industry is facing huge challenges with respect to the conventional method of recording data known as longitudinal magnetic recording. This technology is fast approaching a fundamental physical limit, known as the superparamagnetic limit. A unique way of deferring the superparamagnetic limit incorporates the patterning of magnetic media. This method exploits the use of lithography tools to predetermine the areal density. Various nanofabrication schemes are employed to pattern the magnetic material are Focus Ion Beam (FIB), E-beam Lithography (EBL), UV-Optical Lithography (UVL), Self-assembled Media Synthesis and Nanoimprint Lithography (NIL). Although there are many challenges to manufacturing patterned media, the large potential gains offered in terms of areal density make it one of the most promising new technologies on the horizon for future hard disk drives. Thus, this dissertation contributes to the development of future alternative data storage devices and deferring the superparamagnetic limit by designing and characterizing patterned magnetic media using a novel nanoimprint replication process called "Step and Flash Imprint lithography". As opposed to hot embossing and other high temperature-low pressure processes, SFIL can be performed at low pressure and room temperature. Initial experiments carried out, consisted of process flow design for the patterned structures on sputtered Ni-Fe thin films. The main one being the defectivity analysis for the SFIL process conducted by fabricating and testing devices of varying feature sizes (50 nm to 1 μm) and inspecting them optically as well as testing them electrically. Once the SFIL process was optimized, a number of Ni-Fe coated wafers were imprinted with a template having the patterned topography. A minimum feature size of 40 nm was obtained with varying pitch (1:1, 1:1.5, 1:2, and 1:3). The Characterization steps involved extensive SEM study at each processing step as well as Atomic Force Microscopy (AFM) and Magnetic Force Microscopy (MFM) analysis.
Resumo:
We describe a low-energy glow-discharge process using reactive ion etching system that enables non-circular device patterns, such as squares or hexagons, to be formed from a precursor array of uniform circular openings in polymethyl methacrylate, PMMA, defined by electron beam lithography. This technique is of a particular interest for bit-patterned magnetic recording medium fabrication, where close packed square magnetic bits may improve its recording performance. The process and results of generating close packed square patterns by self-limiting low-energy glow-discharge are investigated. Dense magnetic arrays formed by electrochemical deposition of nickel over self-limiting formed molds are demonstrated.