4 resultados para FERROMAGNETIC SUPERCONDUCTOR RUSR2GDCU2O8

em Digital Commons at Florida International University


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The strong couplings between different degrees of freedom are believed to be responsible for novel and complex phenomena discovered in transition metal oxides (TMOs). The physical complexity is directly responsible for their tunability. Creating surfaces/interfaces add an additional ' man-made' twist, approaching the quantum phenomena of correlated materials. ^ The dissertation focused on the structural and electronic properties in proximity of surface of three prototype TMO compounds by using three complementary techniques: scanning tunneling microscopy, angle-resolved photoelectron spectroscopy and low energy electron diffraction, particularly emphasized the effects of broken symmetry and imperfections like defects on the coupling between charge and lattice degrees of freedom. ^ Ca1.5Sr0.5RuO4 is a layered ruthenate with square lattice and at the boundary of magnetic/orbital instability in Ca2-xSrxRuO4. That the substitution of Sr 2+ with Ca2+ causing RuO6 rotation narrows the dxy band width and changes the Fermi surface topology. Particularly, the γ(dxy) Fermi surface sheet exhibited hole-like in Ca1.5Sr0.5RuO4 in contrast to electron-like in Sr2RuO4, showing a strong charge-lattice coupling. ^ Na0.75CoO2 is a layered cobaltite with triangular lattice exhibiting extraordinary thermoelectric properties. The well-ordered CoO2-terminated surface with random Na distribution was observed. However, lattice constants of the surface are smaller than that in bulk. The surface density of states (DOS) showed strong temperature dependence. Especially, an unusual shift of the minimum DOS occurs below 230 K, clearly indicating a local charging effect on the surface. ^ Cd2Re2O7 is the first known pyrochlore oxide superconductor (Tc ∼ 1K). It exhibited an unusual second-order phase transition occurring at TS1 = 200 K and a controversial first-order transition at TS2 = 120 K. While bulk properties display large anomalies at TS1 but rather subtle and sample-dependent changes at TS2, the surface DOS near the EF show no change at T s1 but a substantial increase below TS2---a complete reversal as the signature for the transitions. We argued that crystal imperfections, mainly defects, which were considerably enhanced at the surface, resulted in the transition at TS2. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Series Micro-Electro-Mechanical System (MEMS) switches based on superconductor are utilized to switch between two bandpass hairpin filters with bandwidths of 365 MHz and nominal center frequencies of 2.1 GHz and 2.6 GHz. This was accomplished with 4 switches actuated in pairs, one pair at a time. When one pair was actuated the first bandpass filter was coupled to the input and output ports. When the other pair was actuated the second bandpass filter was coupled to the input and output ports. The device is made of a YBa2Cu 3O7 thin film deposited on a 20 mm x 20 mm LaAlO3 substrate by pulsed laser deposition. BaTiO3 deposited by RF magnetron sputtering in utilized as the insulation layer at the switching points of contact. These results obtained assured great performance showing a switchable device at 68 V with temperature of 40 K for the 2.1 GHz filter and 75 V with temperature of 30 K for the 2.6 GHz hairpin filter. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this thesis, results of the investigation of a new low-dimensional cobaltates Ba2-xSrxCoO 4 are presented. The synthesis of both polycrystalline and single crystalline compounds using the methods of conventional solid state chemical reaction and floating-zone optical furnace is first introduced. Besides making polycrystalline powders, we successfully, for the first time, synthesized large single crystals of Ba2CoO4. Single crystals were also obtained for Sr doped Ba2-xSrxCoO 4. Powder and single crystal x-ray diffraction results indicate that pure Ba2CoO4 has a monoclinic structure at room temperature. With Sr doping, the lattice structure changes to orthorhombic when x ≥ 0.5 and to tetragonal when x = 2.0. In addition, Ba2CoO4 and Sr2CoO4, have completely different basic building blocks in the structure. One is CoO4 tetrahedron and the later is CoO6 octahedron, respectively. Electronic and magnetic properties were characterized and discussed. The magnetic susceptibility, specific heat and thermal conductivity show that Ba2CoO4 has an antiferromagnetic (AF) ground state with an AF ordering temperature TN = 25 K. However, the magnitude of the Néel temperature TN is significantly lower than the Curie-Weiss temperature (:&thetas;: ∼ 110 K), suggesting either reduced-dimensional magnetic interactions and/or the existence of magnetic frustration. The AF interaction persists in all the samples with different doping concentrations. The Néel temperature doesn't vary much in the monoclinic structure regime but decreases when the system enters orthorhombic. Magnetically, Ba2CoO4 has an AF insulating ground state while Sr2CoO4 has a ferromagnetic (FM) metallic ground state. Neutron powder refinement results indicate a magnetic structure with the spin mostly aligned along the a-axis. The result from a μ-spin rotation/relaxation (μ+SR) experiment agrees with our refinement. It confirms the AF order in the ab -plane. We also studied the spin dynamics and its anisotropy in the AF phase. The results from inelastic neutron scattering show that spin waves have a clear dispersion along a-axis but not along c-axis, indicating spin anisotropy. This work finds the strong spin-lattice coupling in this novel complex material. The interplay between the two degrees of freedom results an interesting phase diagram. Further research is needed when large single crystal samples are available.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The discovery of High-Temperature Superconductors (HTSCs) has spurred the need for the fabrication of superconducting electronic devices able to match the performance of today's semiconductor devices. While there are several HTSCs in use today, YBaCuO7-x (YBCO) is the better characterized and more widely used material for small electronic applications. This thesis explores the fabrication of a Two-Terminal device with a superconductor and a painted on electrode as the terminals and a ferroelectric, BaTiO 3 (BTO), in between. The methods used to construct such a device and the challenges faced with the fabrication of a viable device will be examined. The ferroelectric layer of the devices that proved adequate for use were poled by the application of an electric field. Temperature Bias Poling used an applied field of 105V/cm at a temperature of approximately 135*C. High Potential Poling used an applied field of 106V/cm at room temperature (20*C). The devices were then tested for a change in their superconducting critical temperature, Tc. A shift of 1-2K in the Tc(onset) of YBCO was observed for Temperature Bias Poling and a shift of 2-6K for High Potential Poling. These are the first reported results of the field effect using BTO on YBCO. The mechanism involved in the shifting of Tc will be discussed along with possible applications.