5 resultados para Explicit guarantees
em Digital Commons at Florida International University
Resumo:
Chinese-English bilingual students were randomly assigned to three reading conditions: In the English-English (E-E) condition (n = 44), a text in English was read twice; in the English-Chinese (E-C) condition (n = 30), the English text was read first and its Chinese translation was read second; in the Chinese-English (C-E) condition (n = 30), the Chinese text was read first and English second. An expected explicit memory test on propositions in the format of sentence verification was given followed by an unexpected implicit memory test on unfamiliar word-forms.^ Analyses of covariance were conducted with explicit and implicit memory scores as the dependent variables, reading condition (bilingual versus monolingual) as the independent variable, and TOEFL reading score as the covariate.^ The results showed that the bilingual reading groups outperformed the monolingual reading group on explicit memory tested by sentence-verification but not on implicit memory tested by forced-choice word-identification, implying that bilingual representation facilitates explicit memory of propositional information but not implicit memory of lexical forms. The findings were interpreted as consistent with separate bilingual memory-storage models and the implications of such models in the study of cognitive structures were discussed in relationship to issues of dual coding theory, multiple memory systems, and the linguistic relativity philosophy. ^
Resumo:
Buffered crossbar switches have recently attracted considerable attention as the next generation of high speed interconnects. They are a special type of crossbar switches with an exclusive buffer at each crosspoint of the crossbar. They demonstrate unique advantages over traditional unbuffered crossbar switches, such as high throughput, low latency, and asynchronous packet scheduling. However, since crosspoint buffers are expensive on-chip memories, it is desired that each crosspoint has only a small buffer. This dissertation proposes a series of practical algorithms and techniques for efficient packet scheduling for buffered crossbar switches. To reduce the hardware cost of such switches and make them scalable, we considered partially buffered crossbars, whose crosspoint buffers can be of an arbitrarily small size. Firstly, we introduced a hybrid scheme called Packet-mode Asynchronous Scheduling Algorithm (PASA) to schedule best effort traffic. PASA combines the features of both distributed and centralized scheduling algorithms and can directly handle variable length packets without Segmentation And Reassembly (SAR). We showed by theoretical analysis that it achieves 100% throughput for any admissible traffic in a crossbar with a speedup of two. Moreover, outputs in PASA have a large probability to avoid the more time-consuming centralized scheduling process, and thus make fast scheduling decisions. Secondly, we proposed the Fair Asynchronous Segment Scheduling (FASS) algorithm to handle guaranteed performance traffic with explicit flow rates. FASS reduces the crosspoint buffer size by dividing packets into shorter segments before transmission. It also provides tight constant performance guarantees by emulating the ideal Generalized Processor Sharing (GPS) model. Furthermore, FASS requires no speedup for the crossbar, lowering the hardware cost and improving the switch capacity. Thirdly, we presented a bandwidth allocation scheme called Queue Length Proportional (QLP) to apply FASS to best effort traffic. QLP dynamically obtains a feasible bandwidth allocation matrix based on the queue length information, and thus assists the crossbar switch to be more work-conserving. The feasibility and stability of QLP were proved, no matter whether the traffic distribution is uniform or non-uniform. Hence, based on bandwidth allocation of QLP, FASS can also achieve 100% throughput for best effort traffic in a crossbar without speedup.
Resumo:
This study investigated the effects of an explicit individualized phonemic awareness intervention administered by a speech-language pathologist to 4 prekindergarten children with phonological speech sound disorders. Research has demonstrated that children with moderate-severe expressive phonological disorders are at-risk for poor literacy development because they often concurrently exhibit weaknesses in the development of phonological awareness skills (Rvachew, Ohberg, Grawburg, & Heyding, 2003).^ The research design chosen for this study was a single subject multiple probe design across subjects. After stable baseline measures, the participants received explicit instruction in each of the three phases separately and sequentially. Dependent measures included same-day tests for Phase I (Phoneme Identity), Phase II (Phoneme Blending), and Phase III (Phoneme Segmentation), and generalization and maintenance tests for all three phases.^ All 4 participants made substantial progress in all three phases. These skills were maintained during weekly and biweekly maintenance measures. Generalization measures indicated that the participants demonstrated some increases in their mean total number of correct responses in Phase II and Phase III baseline while the participants were in Phase I intervention, and more substantial increases in Phase III baseline while the participants were in Phase II intervention. Increased generalization from Phases II to III could likely be explained due to the response similarities in those two skills (Cooper, Heron, & Heward, 2007).^ Based upon the findings of this study, speech-language pathologists should evaluate phonological awareness in the children in their caseloads prior to kindergarten entry, and should allocate time during speech therapy to enhance phonological awareness and letter knowledge to support the development of both skills concurrently. Also, classroom teachers should collaborate with speech-language pathologists to identify at-risk students in their classrooms and successfully implement evidence-based phonemic awareness instruction. Future research should repeat this study including larger groups of children, children with combined speech and language delays, children of different ages, and ESOL students.^
Resumo:
The distribution and abundance of the American crocodile (Crocodylus acutus) in the Florida Everglades is dependent on the timing, amount, and location of freshwater flow. One of the goals of the Comprehensive Everglades Restoration Plan (CERP) is to restore historic freshwater flows to American crocodile habitat throughout the Everglades. To predict the impacts on the crocodile population from planned restoration activities, we created a stage-based spatially explicit crocodile population model that incorporated regional hydrology models and American crocodile research and monitoring data. Growth and survival were influenced by salinity, water depth, and density-dependent interactions. A stage-structured spatial model was used with discrete spatial convolution to direct crocodiles toward attractive sources where conditions were favorable. The model predicted that CERP would have both positive and negative impacts on American crocodile growth, survival, and distribution. Overall, crocodile populations across south Florida were predicted to decrease approximately 3 % with the implementation of CERP compared to future conditions without restoration, but local increases up to 30 % occurred in the Joe Bay area near Taylor Slough, and local decreases up to 30 % occurred in the vicinity of Buttonwood Canal due to changes in salinity and freshwater flows.
Resumo:
This study investigated the effects of an explicit individualized phonemic awareness intervention administered by a speech-language pathologist to 4 prekindergarten children with phonological speech sound disorders. Research has demonstrated that children with moderate-severe expressive phonological disorders are at-risk for poor literacy development because they often concurrently exhibit weaknesses in the development of phonological awareness skills (Rvachew, Ohberg, Grawburg, & Heyding, 2003). The research design chosen for this study was a single subject multiple probe design across subjects. After stable baseline measures, the participants received explicit instruction in each of the three phases separately and sequentially. Dependent measures included same-day tests for Phase I (Phoneme Identity), Phase II (Phoneme Blending), and Phase III (Phoneme Segmentation), and generalization and maintenance tests for all three phases. All 4 participants made substantial progress in all three phases. These skills were maintained during weekly and biweekly maintenance measures. Generalization measures indicated that the participants demonstrated some increases in their mean total number of correct responses in Phase II and Phase III baseline while the participants were in Phase I intervention, and more substantial increases in Phase III baseline while the participants were in Phase II intervention. Increased generalization from Phases II to III could likely be explained due to the response similarities in those two skills (Cooper, Heron, & Heward, 2007). Based upon the findings of this study, speech-language pathologists should evaluate phonological awareness in the children in their caseloads prior to kindergarten entry, and should allocate time during speech therapy to enhance phonological awareness and letter knowledge to support the development of both skills concurrently. Also, classroom teachers should collaborate with speech-language pathologists to identify at-risk students in their classrooms and successfully implement evidence-based phonemic awareness instruction. Future research should repeat this study including larger groups of children, children with combined speech and language delays, children of different ages, and ESOL students