4 resultados para Experimental Methods.
em Digital Commons at Florida International University
Resumo:
This dissertation analyzes the relationship between several mystic Sephardic texts called the Kabalah which include the three basic mystic books of Judaism: Sefer Yetsira, Sefer Bahir, and Sefer Zohar, and Argentine writer of Jewish descent, Marcos Ricardo Barnatan’s experimental work. The premise is that several mystic Sephardic texts have certain literary characteristics that make them fertile sources for the inspiration of writers like Barnatan. This thesis proves that Barnatan’s poetry and his first novel El Laberinto De Sion both use the most general concepts of the Kabalah in developing his literary and artistic creations. ^ This study is focuses on the concept that there exists a possibility of reading kabalistic texts not only in an exegetical way, but also in a poetic way. Barnatan’s literature is prone to this kind of reading of the texts. He creates a surprisingly expressive structure without ties to established models. This expressive structure is built on a vast amount of symbols, which results from this freedom. Barnatan adopts multiple symbols from cosmogenic theories and makes use of them, thus incorporating both the spirit and style of kabalistic texts into his own work. ^ Instead of addressing some of the main concerns of Kabbalistic study and its commentary, Barnatan avoids the concern for Law, the study of the Torah and its commentaries, while avoiding the use of the Hebrew language. For this reason Barnatan is too deviant to be considered an extension from the mainstream Kabbalistic commentary. Barnatan’s work is destined for a reader who cannot only understand his experimental methods, but who can also assemble a disjointed text while accepting a fundamental instability of space and time.^
Resumo:
Biomolecular interactions, including protein-protein, protein-DNA, and protein-ligand interactions, are of special importance in all biological systems. These interactions may occer during the loading of biomolecules to interfaces, the translocation of biomolecules through transmembrane protein pores, and the movement of biomolecules in a crowded intracellular environment. The molecular interaction of a protein with its binding partners is crucial in fundamental biological processes such as electron transfer, intracellular signal transmission and regulation, neuroprotective mechanisms, and regulation of DNA topology. In this dissertation, a customized surface plasmon resonance (SPR) has been optimized and new theoretical and label free experimental methods with related analytical calculations have been developed for the analysis of biomolecular interactions. Human neuroglobin (hNgb) and cytochrome c from equine heart (Cyt c) proteins have been used to optimize the customized SPR instrument. The obtained Kd value (~13 µM), from SPR results, for Cyt c-hNgb molecular interactions is in general agreement with a previously published result. The SPR results also confirmed no significant impact of the internal disulfide bridge between Cys 46 and Cys 55 on hNgb binding to Cyt c. Using SPR, E. coli topoisomerase I enzyme turnover during plasmid DNA relaxation was found to be enhanced in the presence of Mg2+. In addition, a new theoretical approach of analyzing biphasic SPR data has been introduced based on analytical solutions of the biphasic rate equations. In order to develop a new label free method to quantitatively study protein-protein interactions, quartz nanopipettes were chemically modified. The derived Kd (~20 µM) value for the Cyt c-hNgb complex formations matched very well with SPR measurements (Kd ~16 µM). The finite element numerical simulation results were similar to the nanopipette experimental results. These results demonstrate that nanopipettes can potentially be used as a new class of a label-free analytical method to quantitatively characterize protein-protein interactions in attoliter sensing volumes, based on a charge sensing mechanism. Moreover, the molecule-based selective nature of hydrophobic and nanometer sized carbon nanotube (CNT) pores was observed. This result might be helpful to understand the selective nature of cellular transport through transmembrane protein pores.
Resumo:
The elevational distributions of tropical treelines are thought to be determined by temperature, and are predicted to shift upslope in response to global warming. In contrast to this hypothesis, global-scale studies have shown that only half of all studied treelines are shifting upslope. Understanding how treelines will respond to climate change has important implications for global biodiversity, especially in the tropics, because tropical treelines generally represent the upper-elevation distribution limit of the hyper-diverse cloudforest ecosystem. In Chapter 1, I introduce the idea that grasslands found above tropical treelines may represent a potential grass ceiling which forest species cannot cross or invade. I use an extensive literature review to outline potential mechanisms which may be acting to stabilize treeline and prevent forest expansion into high-elevation grasslands. In Chapters 2-4, I begin to explore these potential mechanisms through the use of observational and experimental methods. In Chapter 2, I show that there are significant numbers of seedlings occurring just outside of the treeline in the open grasslands and that seed rain is unlikely to limit seedling recruitment above treeline. I also show that microclimates outside of the closed-canopy cloudforest are highly variable and that mean temperatures are likely a poor explanation of tropical treeline elevations. In Chapter 3, I show that juvenile trees maintain freezing resistances similar to adults, but nighttime radiative cooling near the ground in the open grassland results in lower cold temperatures relative to the free atmosphere, exposing seedlings of some species growing above treeline to lethal frost events. In Chapter 4, I use a large-scale seedling transplant experiment to test the effects of mean temperature, absolute low temperature and shade on transplanted seedling survival. I find that increasing mean temperature negatively affects seedling survival of two treeline species while benefiting another. In addition, low temperature extremes and the presence of shade also appear to be important factors affecting seedling survival above tropical treelines. This work demonstrates that mean temperature is a poor predictor of tropical treelines and that temperature extremes, especially low temperatures, and non-climatic variables should be included in predictions of current and future tropical treeline dynamics.
Resumo:
The elevational distributions of tropical treelines are thought to be determined by temperature, and are predicted to shift upslope in response to global warming. In contrast to this hypothesis, global-scale studies have shown that only half of all studied treelines are shifting upslope. Understanding how treelines will respond to climate change has important implications for global biodiversity, especially in the tropics, because tropical treelines generally represent the upper-elevation distribution limit of the hyper-diverse cloudforest ecosystem. In Chapter 1, I introduce the idea that grasslands found above tropical treelines may represent a potential grass ceiling which forest species cannot cross or invade. I use an extensive literature review to outline potential mechanisms which may be acting to stabilize treeline and prevent forest expansion into high-elevation grasslands. In Chapters 2-4, I begin to explore these potential mechanisms through the use of observational and experimental methods. In Chapter 2, I show that there are significant numbers of seedlings occurring just outside of the treeline in the open grasslands and that seed rain is unlikely to limit seedling recruitment above treeline. I also show that microclimates outside of the closed-canopy cloudforest are highly variable and that mean temperatures are likely a poor explanation of tropical treeline elevations. In Chapter 3, I show that juvenile trees maintain freezing resistances similar to adults, but nighttime radiative cooling near the ground in the open grassland results in lower cold temperatures relative to the free atmosphere, exposing seedlings of some species growing above treeline to lethal frost events. In Chapter 4, I use a large-scale seedling transplant experiment to test the effects of mean temperature, absolute low temperature and shade on transplanted seedling survival. I find that increasing mean temperature negatively affects seedling survival of two treeline species while benefiting another. In addition, low temperature extremes and the presence of shade also appear to be important factors affecting seedling survival above tropical treelines. This work demonstrates that mean temperature is a poor predictor of tropical treelines and that temperature extremes, especially low temperatures, and non-climatic variables should be included in predictions of current and future tropical treeline dynamics.^