8 resultados para Experimental Analysis of Behavior

em Digital Commons at Florida International University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

During the remediation of burial grounds at the US Department of Energy's (DOE's) Hanford Site in Washington State, the dispersion of contaminated soil particles and dust is an issue that is faced by site workers on a daily basis. This contamination problem is even more of a concern when one takes into account the semi-arid characteristics of the region where the site is located. To mitigate this problem, workers at the site use a variety of engineered methods to minimize the dispersion of contaminated soil and dust (i.e. use of water and/or suppression agents that stabilizes the soil prior to soil excavation, segregation, and removal activities). A primary contributor to the dispersion of contaminated soil and dust is wind soil erosion. The erosion process occurs when the wind speed exceeds a certain threshold value which depends on a number of factors including wind force loading, particle size, surface soil moisture, and the geometry of the soil. Thus under these circumstances, the mobility of contaminated soil and generation and dispersion of particulate matter are significantly influenced by these parameters. This dependence of soil and dust movement on threshold shear velocity, fixative dilution and/or application rates, soil moisture content, and soil geometry were studied for Hanford's sandy soil through a series of wind tunnel experiments, laboratory experiments and theoretical analysis. In addition, the behavior of plutonium (Pu) powder contamination in the soil was studied by introducing a Pu simulant (cerium oxide). The results showed that soil dispersion and PM10 concentrations decreased with increasing soil moisture. Also, it was shown that the mobility of the soil was affected by increasing wind velocity. It was demonstrated that the use of fixative products greatly decreased the amount of soil and PM10 concentrations when exposed to varying wind conditions. In addition, it was shown that geometry of the soil sample affected the velocity profile and calculation of roughness surface coefficient when comparing round and flat soil samples. Finally, threshold shear velocities were calculated for soil with flat surface and their dependency on surface soil moisture was demonstrated. A theoretical framework was developed to explain these dependencies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neophobia, the fear of novelty, is a behavioral trait found across a number of animal species, including humans. Neophobic individuals perceive novel environments and stimuli to have aversive properties, and exhibit fearful behaviors when presented with non-familiar situations. The present study examined how early life exposure to aversive novel stimuli could reduce neophobia in bobwhite quail chicks. Experiment 1 exposed chicks to a novel auditory tone previously shown to be aversive to naïve chicks (Suarez, 2012) for 24 hours immediately after hatching, then subsequently tested them in the presence of the tone within a novel maze task. Postnatally exposed chicks demonstrated decreased fearfulness compared to naïve chicks, and behaved more similarly to chicks tested in the presence of a known attractive auditory stimulus (a bobwhite maternal assembly call vocalization). Experiment 2 exposed chicks to the novel auditory tone for 24 hours prenatally, then subsequently tested them within a novel maze task. Prenatally exposed chicks showed decreased fearfulness to a similar degree as those postnatally exposed, revealing that both prenatal and postnatal exposure methods are capable of decreasing fear of auditory stimuli. Experiment 3 exposed chicks to a novel visual stimulus for 24 hours postnatally, then subsequently tested them within a novel emergence box / T-maze apparatus. Chicks exposed to the visual stimulus showed decreased fearfulness compared to naïve chicks, thereby demonstrating the utility of this method across sense modalities. Experiment 4 assessed whether early postnatal exposure to one novel stimulus could generalize and serve to decrease fear of novelty when chicks were tested in the presence of markedly different stimuli. By combining the methods of Experiments 1 and 3, this experiment revealed that chicks exposed to one type of stimulus (auditory or visual) demonstrated decreased fear when subsequently tested in the presence of the opposite type of novel stimulus. These results suggest that experience with novel stimuli can moderate the extent to which neophobia will develop during early development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study reports one of the first controlled studies to examine the impact of a school based positive youth development program (Lerner, Fisher, & Weinberg, 2000) on promoting qualitative change in life course experiences as a positive intervention outcome. The study built on a recently proposed relational developmental methodological metanarrative (Overton, 1998) and advances in use of qualitative research methods (Denzin & Lincoln, 2000). The study investigated the use the Life Course Interview (Clausen, 1998) and an integrated qualitative and quantitative data analytic strategy (IQDAS) to provide empirical documentation of the impact the Changing Lives Program on qualitative change in positive identity in a multicultural population of troubled youth in an alternative public high school. The psychosocial life course intervention approach used in this study draws its developmental framework from both psychosocial developmental theory (Erikson, 1968) and life course theory (Elder, 1998) and its intervention strategies from the transformative pedagogy of Freire's (1983/1970). Using the 22 participants in the Intervention Condition and the 10 participants in the Control Condition, RMANOVAs found significantly more positive qualitative change in personal identity for program participants relative to the non-intervention control condition. In addition, the 2X2X2X3 mixed design RMANOVA in which Time (pre, post) was the repeated factor and Condition (Intervention versus Control), Gender, and Ethnicity the between group factors, also found significant interactions for the Time by Gender and Time by Ethnicity. Moreover, the directionality of the basic pattern of change was positive for participants of both genders and all three ethnic groups. The pattern of the moderation effects also indicated a marked tendency for participants in the intervention group to characterize their sense of self as more secure and less negative at the end of the their first semester in the intervention, that was stable across both genders and all three ethnicities. The basic differential pattern of an increase in the intervention condition of a positive characterization of sense of self relative to both pre test and relative to the directionality of the movement of the non-intervention controls, was stable across both genders and all three ethnic groups.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Today, over 15,000 Ion Mobility Spectrometry (IMS) analyzers are employed at worldwide security checkpoints to detect explosives and illicit drugs. Current portal IMS instruments and other electronic nose technologies detect explosives and drugs by analyzing samples containing the headspace air and loose particles residing on a surface. Canines can outperform these systems at sampling and detecting the low vapor pressure explosives and drugs, such as RDX, PETN, cocaine, and MDMA, because these biological detectors target the volatile signature compounds available in the headspace rather than the non-volatile parent compounds of explosives and drugs.^ In this dissertation research volatile signature compounds available in the headspace over explosive and drug samples were detected using SPME as a headspace sampling tool coupled to an IMS analyzer. A Genetic Algorithm (GA) technique was developed to optimize the operating conditions of a commercial IMS (GE Itemizer 2), leading to the successful detection of plastic explosives (Detasheet, Semtex H, and C-4) and illicit drugs (cocaine, MDMA, and marijuana). Short sampling times (between 10 sec to 5 min) were adequate to extract and preconcentrate sufficient analytes (> 20 ng) representing the volatile signatures in the headspace of a 15 mL glass vial or a quart-sized can containing ≤ 1 g of the bulk explosive or drug.^ Furthermore, a research grade IMS with flexibility for changing operating conditions and physical configurations was designed and fabricated to accommodate future research into different analytes or physical configurations. The design and construction of the FIU-IMS were facilitated by computer modeling and simulation of ion’s behavior within an IMS. The simulation method developed uses SIMION/SDS and was evaluated with experimental data collected using a commercial IMS (PCP Phemto Chem 110). The FIU-IMS instrument has comparable performance to the GE Itemizer 2 (average resolving power of 14, resolution of 3 between two drugs and two explosives, and LODs range from 0.7 to 9 ng). ^ The results from this dissertation further advance the concept of targeting volatile components to presumptively detect the presence of concealed bulk explosives and drugs by SPME-IMS, and the new FIU-IMS provides a flexible platform for future IMS research projects.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most research on tax evasion has focused on the income tax. Sales tax evasion has been largely ignored and dismissed as immaterial. This paper explored the differences between income tax and sales tax evasion and demonstrated that sales tax enforcement is deserving of and requires the use of different tools to achieve compliance. Specifically, the major enforcement problem with sales tax is not evasion: it is theft perpetrated by companies that act as collection agents for the state. Companies engage in a principal-agent relationship with the state and many retain funds collected as an agent of the state for private use. As such, the act of sales tax theft bears more resemblance to embezzlement than to income tax evasion. It has long been assumed that the sales tax is nearly evasion free, and state revenue departments report voluntary compliance in a manner that perpetuates this myth. Current sales tax compliance enforcement methodologies are similar in form to income tax compliance enforcement methodologies and are based largely on trust. The primary focus is on delinquent filers with a very small percentage of businesses subject to audit. As a result, there is a very large group of noncompliant businesses who file on time and fly below the radar while stealing millions of taxpayer dollars. ^ The author utilized a variety of statistical methods with actual field data derived from operations of the Southern Region Criminal Investigations Unit of the Florida Department of Revenue to evaluate current and proposed sales tax compliance enforcement methodologies in a quasi-experimental, time series research design and to set forth a typology of sales tax evaders. This study showed that current estimates of voluntary compliance in sales tax systems are seriously and significantly overstated and that current enforcement methodologies are inadequate to identify the majority of violators and enforce compliance. Sales tax evasion is modeled using the theory of planned behavior and Cressey’s fraud triangle and it is demonstrated that proactive enforcement activities, characterized by substantial contact with non-delinquent taxpayers, results in superior ability to identify noncompliance and provides a structure through which noncompliant businesses can be rehabilitated.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nitric Oxide (NO) is produced in the vascular endothelium where it then diffuses to the adjacent smooth muscle cells (SMC) activating agents known to regulate vascular tone. The close proximity of the site of NO production to the red blood cells (RBC) and its known fast consumption by hemoglobin, suggests that the blood will scavenge most of the NO produced. Therefore, it is unclear how NO is able to play its role in accomplishing vasodilation. Investigation of NO production and consumption rates will allow insight into this paradox. DAF-FM is a sensitive NO fluorescence probe widely used for qualitative assessment of cellular NO production. With the aid of a mathematical model of NO/DAF-FM reaction kinetics, experimental studies were conducted to calibrate the fluorescence signal showing that the slope of fluorescent intensity is proportional to [NO]2 and exhibits a saturation dependence on [DAF-FM]. In addition, experimental data exhibited a Km dependence on [NO]. This finding was incorporated into the model elucidating NO 2 as the possible activating agent of DAF-FM. A calibration procedure was formed and applied to agonist stimulated cells, providing an estimated NO release rate of 0.418 ± 0.18 pmol/cm2s. To assess NO consumption by RBCs, measurements of the rate of NO consumption in a gas stream flowing on top of an RBC solution of specified Hematocrit (Hct) was performed. The consumption rate constant (kbl)in porcine RBCs at 25°C and 45% Hct was estimated to be 3500 + 700 s-1. kbl is highly dependent on Hct and can reach up to 9900 + 4000 s-1 for 60% Hct. The nonlinear dependence of kbl on Hct suggests a predominant role for extracellular diffusion in limiting NO uptake. Further simulations showed a linear relationship between varying NO production rates and NO availability in the SMCs utilizing the estimated NO consumption rate. The corresponding SMC [NO] level for the average NO production rate estimated was approximately 15.1 nM. With the aid of experimental and theoretical methods we were able to examine the NO paradox and exhibit that endothelial derived NO is able to escape scavenging by RBCs to diffuse to the SMCs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Inverters play key roles in connecting sustainable energy (SE) sources to the local loads and the ac grid. Although there has been a rapid expansion in the use of renewable sources in recent years, fundamental research, on the design of inverters that are specialized for use in these systems, is still needed. Recent advances in power electronics have led to proposing new topologies and switching patterns for single-stage power conversion, which are appropriate for SE sources and energy storage devices. The current source inverter (CSI) topology, along with a newly proposed switching pattern, is capable of converting the low dc voltage to the line ac in only one stage. Simple implementation and high reliability, together with the potential advantages of higher efficiency and lower cost, turns the so-called, single-stage boost inverter (SSBI), into a viable competitor to the existing SE-based power conversion technologies.^ The dynamic model is one of the most essential requirements for performance analysis and control design of any engineering system. Thus, in order to have satisfactory operation, it is necessary to derive a dynamic model for the SSBI system. However, because of the switching behavior and nonlinear elements involved, analysis of the SSBI is a complicated task.^ This research applies the state-space averaging technique to the SSBI to develop the state-space-averaged model of the SSBI under stand-alone and grid-connected modes of operation. Then, a small-signal model is derived by means of the perturbation and linearization method. An experimental hardware set-up, including a laboratory-scaled prototype SSBI, is built and the validity of the obtained models is verified through simulation and experiments. Finally, an eigenvalue sensitivity analysis is performed to investigate the stability and dynamic behavior of the SSBI system over a typical range of operation. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Today, over 15,000 Ion Mobility Spectrometry (IMS) analyzers are employed at worldwide security checkpoints to detect explosives and illicit drugs. Current portal IMS instruments and other electronic nose technologies detect explosives and drugs by analyzing samples containing the headspace air and loose particles residing on a surface. Canines can outperform these systems at sampling and detecting the low vapor pressure explosives and drugs, such as RDX, PETN, cocaine, and MDMA, because these biological detectors target the volatile signature compounds available in the headspace rather than the non-volatile parent compounds of explosives and drugs. In this dissertation research volatile signature compounds available in the headspace over explosive and drug samples were detected using SPME as a headspace sampling tool coupled to an IMS analyzer. A Genetic Algorithm (GA) technique was developed to optimize the operating conditions of a commercial IMS (GE Itemizer 2), leading to the successful detection of plastic explosives (Detasheet, Semtex H, and C-4) and illicit drugs (cocaine, MDMA, and marijuana). Short sampling times (between 10 sec to 5 min) were adequate to extract and preconcentrate sufficient analytes (> 20 ng) representing the volatile signatures in the headspace of a 15 mL glass vial or a quart-sized can containing ≤ 1 g of the bulk explosive or drug. Furthermore, a research grade IMS with flexibility for changing operating conditions and physical configurations was designed and fabricated to accommodate future research into different analytes or physical configurations. The design and construction of the FIU-IMS were facilitated by computer modeling and simulation of ion’s behavior within an IMS. The simulation method developed uses SIMION/SDS and was evaluated with experimental data collected using a commercial IMS (PCP Phemto Chem 110). The FIU-IMS instrument has comparable performance to the GE Itemizer 2 (average resolving power of 14, resolution of 3 between two drugs and two explosives, and LODs range from 0.7 to 9 ng). The results from this dissertation further advance the concept of targeting volatile components to presumptively detect the presence of concealed bulk explosives and drugs by SPME-IMS, and the new FIU-IMS provides a flexible platform for future IMS research projects.