4 resultados para Exchange interactions

em Digital Commons at Florida International University


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Arsenic has been classified as a group I carcinogen. It has been ranked number one in the CERCLA priority list of hazardous substances due to its frequency, toxicity and potential for human exposure. Paradoxically, arsenic has been employed as a successful chemotherapeutic agent for acute promyelocytic leukemia and has found some success in multiple myeloma. Since arsenic toxicity and efficacy is species dependent, a speciation method, based on the complementary use of reverse phase and cation exchange chromatography, was developed. Inductively coupled plasma mass spectrometer (ICP-MS), as an element specific detector, and electrospray ionization mass spectrometer (ESI-MS), as a molecule specific detector, were employed. Low detection limits in the µg. L−1 range on the ICP-MS and mg. L−1 range on the ESI-MS were obtained. The developed methods were validated against each other through the use of a Deming plot. With the developed speciation method, the effects of both pH on the stability of As species and reduced glutathione (GSH) concentration on the formation and stability of arsenic glutathione complexes were studied. To identify arsenicals in multiple myeloma (MM) cell lines post arsenic trioxide (ATO) and darinaparsin (DAR) incubation, an extraction method based on the use of ultrasonic probe was developed. Extraction tools and solvents were evaluated and the effect of GSH concentration on the quantitation of arsenic glutathione (As-GSH) complexes in MM cell extracts was studied. The developed method was employed for the identification of metabolites in DAR incubated cell lines where the effect of extraction pH, DAR incubation concentration and incubation time on the relative distribution of the As metabolites was assessed. A new arsenic species, dimethyarsinothioyl glutathione (DMMTA V-GS), a pentavalent thiolated arsenical, was identified in the cell extracts through the use of liquid chromatography tandem mass spectrometry. The formation of the new metabolite in the extracts was dependent on the decomposition of s-dimethylarsino glutathione (DMA(GS)). These results have major implications in both the medical and toxicological fields of As because they involve the metabolism of a chemotherapeutic agent and the role sulfur compounds play in this mechanism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The research presented in this dissertation investigated selected processes involving baryons and nuclei in hard scattering reactions. These processes are characterized by the production of particles with large energies and transverse momenta. Through these processes, this work explored both, the constituent (quark) structure of baryons (specifically nucleons and Δ-Isobars), and the mechanisms through which the interactions between these constituents ultimately control the selected reactions. The first of such reactions is the hard nucleon-nucleon elastic scattering, which was studied here considering the quark exchange between the nucleons to be the dominant mechanism of interaction in the constituent picture. In particular, it was found that an angular asymmetry exhibited by proton-neutron elastic scattering data is explained within this framework if a quark-diquark picture dominates the nucleon’s structure instead of a more traditional SU(6) three quarks picture. The latter yields an asymmetry around 90o center of mass scattering with a sign opposite to what is experimentally observed. The second process is the hard breakup by a photon of a nucleon-nucleon system in light nuclei. Proton-proton (pp) and proton-neutron (pn) breakup in 3He, and ΔΔ-isobars production in deuteron breakup were analyzed in the hard rescattering model (HRM), which in conjunction with the quark interchange mechanism provides a Quantum Chromodynamics (QCD) description of the reaction. Through the HRM, cross sections for both channels in 3He photodisintegration were computed without the need of a fitting parameter. The results presented here for pp breakup show excellent agreement with recent experimental data. In ΔΔ-isobars production in deuteron breakup, HRM angular distributions for the two ΔΔ channels were compared to the pn channel and to each other. An important prediction fromthis study is that the Δ++Δ- channel consistently dominates Δ+Δ0, which is in contrast with models that unlike the HRM consider a ΔΔ system in the initial state of the interaction. For such models both channels should have the same strength. These results are important in developing a QCD description of the atomic nucleus.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We determined how different hydroperiods affected leaf gas exchange characteristics of greenhouse-grown seedlings (2002) and saplings (2003) of the mangrove species Avicennia germinans (L.) Stearn., Laguncularia racemosa (L.) Gaertn. f., and Rhizophora mangle L. Hydroperiod treatments included no flooding (unflooded), intermittent flooding (intermittent), and permanent flooding (flooded). Plants in the intermittent treatment were measured under both flooded and drained states and compared separately. In the greenhouse study, plants of all species maintained different leaf areas in the contrasting hydroperiods during both years. Assimilation-light response curves indicated that the different hydroperiods had little effect on leaf gas exchange characteristics in either seedlings or saplings. However, short-term intermittent flooding for between 6 and 22 days caused a 20% reduction in maximum leaf-level carbon assimilation rate, a 51% lower light requirement to attain 50% of maximum assimilation, and a 38% higher demand from dark respiration. Although interspecific differences were evident for nearly all measured parameters in both years, there was little consistency in ranking of the interspecific responses. Species by hydroperiod interactions were significant only for sapling leaf area. In a field study, R. mangle saplings along the Shark River in the Everglades National Park either demonstrated no significant effect or slight enhancement of carbon assimilation and water-use efficiency while flooded. We obtained little evidence that contrasting hydroperiods affect leaf gas exchange characteristics of mangrove seedlings or saplings over long time intervals; however, intermittent flooding may cause short-term depressions in leaf gas exchange. The resilience of mangrove systems to flooding, as demonstrated in the permanently flooded treatments, will likely promote photosynthetic and morphological adjustment to slight hydroperiod shifts in many settings.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The southern Everglades and Florida Bay have experienced a nearly 50 % reduction in freshwater flow resulting in increased salinity and landward expansion of mangrove forest. Given the marine end-member is a natural source of P to this region, it is necessary to understand the interactions between inflows and P availability in controlling the exchange of materials across the mangrove ecotone. From 2007 to 2008, we used sediment core incubations to quantify fluxes of dissolved inorganic N and P and dissolved organic carbon (DOC) in three ecotone areas (dwarf mangrove, pond, and bay). Experiments were repeated seasonally over 2 years involving P-enriched surface water as a factor. We saw consistent uptake of soluble reactive P (SRP), DOC, and nitrate + nitrite (N+N) by the soils/sediments and release of ammonium (NH4 +) from soils/sediments to the water column across all sites and seasons. P enrichment had no discernible effect on DIN or DOC flux, suggesting that rapid P uptake may have been more geochemically mediated. However, uptake of added P occurred across all sites and seasons, reflecting high uptake capacity in this carbonate system and the potential of the mangrove ecotone to sequester P as it becomes more available.