4 resultados para Excavating Sponges

em Digital Commons at Florida International University


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The purpose of this study was to critically evaluate Tom Stoppard’s application of chaos theory and quantum science in ROSENCRANTZ AND GUILDENSTERN ARE DEAD, HAPGOOD and ARCADIA; and determine the extent to which Stoppard argues for the importance of human action and choice. ^ Through critical analysis this study examined how Stoppard applies the quantum aspects of: (1) indeterminacy to human epistemology in ROSENCRANTZ AND GUILDENSTERN ARE DEAD; (2) complementarity to human identity in HAPGOOD; and (3) recursive symmetry to human history in ARCADIA. It also examined how Stoppard excavates the complexities of human action, choice and identity through the lens of chaos theory and quantum science. ^ These findings demonstrated that Tom Stoppard is not merely juxtaposing quantum science and human interactions for the sake of drama; rather, by excavating the complexities of human action, choice and identity through the lens of chaos theory and quantum science, Stoppard demonstrates the fundamental connection between individuals and the post-Newtonian universe.^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An unprecedented series of ecological disturbances have been recurring within Florida Bay since the summer of 1987. Persistent and widespread phytoplankton and cyanobacteria blooms have coincided with the large scale decimation of sponge communities. One hypothesis is that the large scale loss of suspension-feeding sponges has rendered the Florida Bay ecosystem susceptible to these recurring blooms. The primary objective of this study was to experimentally evaluate the potential for suspension-feeding sponges to control nuisance phytoplankton blooms within Florida Bay prior to a large sponge die-off event. To achieve this objective, we determined the extent and biomass of the surviving sponge community in the different basins of Florida Bay. Many areas within Florida Bay possessed sponge densities and biomasses of 1 to 3 ind. m–2 or 100 to 300 g m–2 respectively. The dominant species includedSpheciospongia vesparia, Chondrilla nucula, Cinachyra alloclada, Tedania ignis and Ircinia sp., which accounted for 68% of individual sponges observed and 88% of sponge biomass. Laboratory grazing rates of these dominant sponges were experimentally determined on 4 different algal food treatments: a monoculture of cyanobacteria Synechococcus elongatus, a monoculture of the diatom Cyclotella choctawhatcheeana, a monoculture of the dinoflagellate Prorocentrum hoffmanianum, and an equal volume of the 3 monocultures combined. To estimate the impact of a mass sponge mortality event on the system-wide filtration rate of Florida Bay, we combined estimates of the current sponge biomass and laboratory sponge filtration rates with estimates of mean volumes of the sub-basins of Florida Bay. This study implies that the current blooms occurring within the central region of Florida Bay can be explained by the loss of the dominant suspension feeder in this system, and there is no need to invoke a new addition of nutrients within this region for the blooms to occur.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Successfully rehabilitating drained wetlands through hydrologic restoration is dependent on defining restoration targets, a process that is informed by pre-drainage conditions, as well as understanding linkages between hydrology and ecosystem structure. Paleoecological records can inform restoration goals by revealing long-term patterns of change, but are dependent on preservation of biomarkers that provide meaningful interpretations of environmental change. In the Florida Everglades, paleohydrological hind-casting could improve restoration forecasting, but frequent drying of marsh soils leads to poor preservation of many biomarkers. To determine the effectiveness of employing siliceous subfossils in paleohydrological reconstructions, we examined diatoms, plant and sponge silico-sclerids from three soil cores in the central Everglades marshes. Subfossil quality varied among cores, but the abundance of recognizable specimens was sufficient to infer 1,000–3,000 years of hydrologic change at decadal to centennial resolution. Phytolith morphotypes were linked to key marsh plant species to indirectly measure fluctuations in water depth. A modern dataset was used to derive diatom-based inferences of water depth and hydroperiod (R2 = 0.63, 0.47; RMSE = 14 cm, 120 days, respectively). Changes in subfossil quality and abundances at centennial time-scales were associated with mid-Holocene climate events including the Little Ice Age and Medieval Warm Period, while decadal-scale fluctuations in assemblage structure during the twentieth century suggested co-regulation of hydrology by cyclical climate drivers (particularly the Atlantic Multidecadal Oscillation) and water management changes. The successful reconstructions based on siliceous subfossils shown here at a coarse temporal scale (i.e., decadal to centennial) advocate for their application in more highly resolved (i.e., subdecadal) records, which should improve the ability of water managers to target the quantity and variability of water flows appropriate for hydrologic restoration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Southeast Florida’s continual urban expansion will potentially increase anthropogenic pollution in adjacent coastal marine systems. Furthermore, increased nutrient loads could have detrimental effects on the already threatened Florida Reef Tract. The present study uses a stable isotopic approach to determine the sources and the impact of nutrients on the Florida Reef Tract. δ13C and δ15N analysis of macroalgae, sponges, and sediment were analyzed in order to determine nutrient inputs in this region. While δ13C data did not display any significant trends spatially, δ15N values of the majority of biota exhibited a strong East to West gradient with more enriched values close to shore. Relative enrichment in δ15N values were measured for sediments sampled along the Florida Reef Tract in comparison to a pristine Marquesas Keys sediment core. The δ15N data also implies that shoreline anthropogenic nutrients have more nutrient loading implications on reefs than major point sources.