15 resultados para Evaluation models

em Digital Commons at Florida International University


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Since the establishment of the evaluation system in 1975, the junior colleges in the Republic of China (Taiwan), have gone through six formal evaluations. We know that evaluation in schooling, like quality control in businesses, should be a systematic, formal, and a continual process. It can doubtless serve as a strategy to refine the quality of education. The purpose of this research is to explore the current practice of junior college evaluation in Taiwan. This provides insight into the development of and quality of the current evaluation system. Moreover, this study also identified the source of problems with the current evaluation system and provided suggestion for improvements.^ In order to attain the above purposes, this research was undertaken in both theoretical and practical ways. First, theoretically, on the basis of a literature review, the theories of educational evaluation and, according to the course and principles of development, a view of the current practice in Taiwan. Secondly, in practice, by means of questionnaires, an analysis of the views of evaluation committeemen, junior college presidents, and administrators were obtained on evaluation models, methods, contents, organization, functions, criteria, grades reports, and others with suggestions for improvement. The summary of findings concludes that most evaluators and evaluatees think the purpose of evaluation can help the colleges explore their difficulties and problems. In addition, it was found that there is significant difference between the two groups regarding the evaluation methods, contents, organization, functions, criteria, grades reports and others, while analyzing these objective data forms the basis for an improved method of evaluation for Junior Colleges in Taiwan. ^

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Voice communication systems such as Voice-over IP (VoIP), Public Switched Telephone Networks, and Mobile Telephone Networks, are an integral means of human tele-interaction. These systems pose distinctive challenges due to their unique characteristics such as low volume, burstiness and stringent delay/loss requirements across heterogeneous underlying network technologies. Effective quality evaluation methodologies are important for system development and refinement, particularly by adopting user feedback based measurement. Presently, most of the evaluation models are system-centric (Quality of Service or QoS-based), which questioned us to explore a user-centric (Quality of Experience or QoE-based) approach as a step towards the human-centric paradigm of system design. We research an affect-based QoE evaluation framework which attempts to capture users' perception while they are engaged in voice communication. Our modular approach consists of feature extraction from multiple information sources including various affective cues and different classification procedures such as Support Vector Machines (SVM) and k-Nearest Neighbor (kNN). The experimental study is illustrated in depth with detailed analysis of results. The evidences collected provide the potential feasibility of our approach for QoE evaluation and suggest the consideration of human affective attributes in modeling user experience.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Convergence among treatment, prevention, and developmental intervention approaches has led to the recognition of the need for evaluation models and research designs that employ a full range of evaluation information to provide an empirical basis for enhancing the efficiency, efficacy, and effectiveness of prevention and positive development interventions. This study reports an investigation of a positive youth development program using an Outcome Mediation Cascade (OMC) evaluation model, an integrated model for evaluating the empirical intersection between intervention and developmental processes. The Changing Lives Program (CLP) is a community supported positive youth development intervention implemented in a practice setting as a selective/indicated program for multi-ethnic, multi-problem at risk youth in urban alternative high schools. This study used a Relational Data Analysis integration of quantitative and qualitative data analysis strategies, including the use of both fixed and free response measures and a structural equation modeling approach, to construct and evaluate the hypothesized OMC model. Findings indicated that the hypothesized model fit the data (χ2 (7) = 6.991, p = .43; RMSEA = .00; CFI = 1.00; WRMR = .459). Findings also provided preliminary evidence consistent with the hypothesis that in addition to having effects on targeted positive outcomes, PYD interventions are likely to have progressive cascading effects on untargeted problem outcomes that operate through effects on positive outcomes. Furthermore, the general pattern of findings suggested the need to use methods capable of capturing both quantitative and qualitative change in order to increase the likelihood of identifying more complete theory informed empirically supported models of developmental intervention change processes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A high frequency physical phase variable electric machine model was developed using FE analysis. The model was implemented in a machine drive environment with hardware-in-the-loop. The novelty of the proposed model is that it is derived based on the actual geometrical and other physical information of the motor, considering each individual turn in the winding. This is the first attempt to develop such a model to obtain high frequency machine parameters without resorting to expensive experimental procedures currently in use. The model was used in a dynamic simulation environment to predict inverter-motor interaction. This includes motor terminal overvoltage, current spikes, as well as switching effects. In addition, a complete drive model was developed for electromagnetic interference (EMI) analysis and evaluation. This consists of the lumped parameter models of different system components, such as cable, inverter, and motor. The lumped parameter models enable faster simulations. The results obtained were verified by experimental measurements and excellent agreements were obtained. A change in the winding arrangement and its influence on the motor high frequency behavior has also been investigated. This was shown to have a little effect on the parameter values and in the motor high frequency behavior for equal number of turns. An accurate prediction of overvoltage and EMI in the design stages of the drive system would reduce the time required for the design modifications as well as for the evaluation of EMC compliance issues. The model can be utilized in the design optimization and insulation selection for motors. Use of this procedure could prove economical, as it would help designers develop and test new motor designs for the evaluation of operational impacts in various motor drive applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The nation's freeway systems are becoming increasingly congested. A major contribution to traffic congestion on freeways is due to traffic incidents. Traffic incidents are non-recurring events such as accidents or stranded vehicles that cause a temporary roadway capacity reduction, and they can account for as much as 60 percent of all traffic congestion on freeways. One major freeway incident management strategy involves diverting traffic to avoid incident locations by relaying timely information through Intelligent Transportation Systems (ITS) devices such as dynamic message signs or real-time traveler information systems. The decision to divert traffic depends foremost on the expected duration of an incident, which is difficult to predict. In addition, the duration of an incident is affected by many contributing factors. Determining and understanding these factors can help the process of identifying and developing better strategies to reduce incident durations and alleviate traffic congestion. A number of research studies have attempted to develop models to predict incident durations, yet with limited success. ^ This dissertation research attempts to improve on this previous effort by applying data mining techniques to a comprehensive incident database maintained by the District 4 ITS Office of the Florida Department of Transportation (FDOT). Two categories of incident duration prediction models were developed: "offline" models designed for use in the performance evaluation of incident management programs, and "online" models for real-time prediction of incident duration to aid in the decision making of traffic diversion in the event of an ongoing incident. Multiple data mining analysis techniques were applied and evaluated in the research. The multiple linear regression analysis and decision tree based method were applied to develop the offline models, and the rule-based method and a tree algorithm called M5P were used to develop the online models. ^ The results show that the models in general can achieve high prediction accuracy within acceptable time intervals of the actual durations. The research also identifies some new contributing factors that have not been examined in past studies. As part of the research effort, software code was developed to implement the models in the existing software system of District 4 FDOT for actual applications. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel trileaflet polymer valve is a composite design of a biostable polymer poly(styrene-isobutylene-styrene) (SIBS) with a reinforcement polyethylene terephthalate (PET) fabric. Surface roughness and hydrophilicity vary with fabrication methods and influence leaflet biocompatibility. The purpose of this study was to investigate the biocompatibility of this composite material using both small animal (nonfunctional mode) and large animal (functional mode) models. Composite samples were manufactured using dip coating and solvent casting with different coating thickness (251μm and 50μm). Sample's surface was characterized through qualitative SEM observation and quantitative surface roughness analysis. A novel rat abdominal aorta model was developed to test the composite samples in a similar pulsatile flow condition as its intended use. The sample's tissue response was characterized by histological examination. Among the samples tested, the 25μm solvent-cast sample exhibited the smoothest surface and best biocompatibility in terms of tissue capsulation thickness, and was chosen as the method for fabrication of the SIBS valve. Phosphocholine was used to create a hydrophilic surface on selected composite samples, which resulted in improved blood compatibility. Four SIBS valves (two with phosphocholine modification) were implanted into sheep. Echocardiography, blood chemistry, and system pathology were conducted to evaluate the valve's performance and biocompatibility. No adverse response was identified following implantation. The average survival time was 76 days, and one sheep with the phosphocholine modified valve passed the FDA minimum requirement of 140 days with approximately 20 million cycles of valve activity. The explanted valves were observed under the aid of a dissection microscope, and evaluated via histology, SEM and X-ray. Surface cracks and calcified tissue deposition were found on the leaflets. In conclusion, we demonstrated the applicability of using a new rat abdominal aorta model for biocompatibility assessment of polymeric materials. A smooth and complete coating surface is essential for the biocompatibility of PET/SIBS composite, and surface modification using phosphocholine improves blood compatibility. Extrinsic calcification was identified on the leaflets and was associated with regions of surface cracks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ensuring the correctness of software has been the major motivation in software research, constituting a Grand Challenge. Due to its impact in the final implementation, one critical aspect of software is its architectural design. By guaranteeing a correct architectural design, major and costly flaws can be caught early on in the development cycle. Software architecture design has received a lot of attention in the past years, with several methods, techniques and tools developed. However, there is still more to be done, such as providing adequate formal analysis of software architectures. On these regards, a framework to ensure system dependability from design to implementation has been developed at FIU (Florida International University). This framework is based on SAM (Software Architecture Model), an ADL (Architecture Description Language), that allows hierarchical compositions of components and connectors, defines an architectural modeling language for the behavior of components and connectors, and provides a specification language for the behavioral properties. The behavioral model of a SAM model is expressed in the form of Petri nets and the properties in first order linear temporal logic.^ This dissertation presents a formal verification and testing approach to guarantee the correctness of Software Architectures. The Software Architectures studied are expressed in SAM. For the formal verification approach, the technique applied was model checking and the model checker of choice was Spin. As part of the approach, a SAM model is formally translated to a model in the input language of Spin and verified for its correctness with respect to temporal properties. In terms of testing, a testing approach for SAM architectures was defined which includes the evaluation of test cases based on Petri net testing theory to be used in the testing process at the design level. Additionally, the information at the design level is used to derive test cases for the implementation level. Finally, a modeling and analysis tool (SAM tool) was implemented to help support the design and analysis of SAM models. The results show the applicability of the approach to testing and verification of SAM models with the aid of the SAM tool.^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of the present dissertation was to evaluate the internal validity of symptoms of four common anxiety disorders included in the Diagnostic and Statistical Manual of Mental Disorders fourth edition (text revision) (DSM-IV-TR; American Psychiatric Association, 2000), namely, separation anxiety disorder (SAD), social phobia (SOP), specific phobia (SP), and generalized anxiety disorder (GAD), in a sample of 625 youth (ages 6 to 17 years) referred to an anxiety disorders clinic and 479 parents. Confirmatory factor analyses (CFAs) were conducted on the dichotomous items of the SAD, SOP, SP, and GAD sections of the youth and parent versions of the Anxiety Disorders Interview Schedule for DSM-IV (ADIS-IV: C/P; Silverman & Albano, 1996) to test and compare a number of factor models including a factor model based on the DSM. Contrary to predictions, findings from CFAs showed that a correlated model with five factors of SAD, SOP, SP, GAD worry, and GAD somatic distress, provided the best fit of the youth data as well as the parent data. Multiple group CFAs supported the metric invariance of the correlated five factor model across boys and girls. Thus, the present study’s finding supports the internal validity of DSM-IV SAD, SOP, and SP, but raises doubt regarding the internal validity of GAD.^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Despite a considerable progress in developing and testing psychosocial treatments to reduce youth anxiety disorders, much remains to learn about the relation between anxiety symptom reduction and change in youth functional impairment. The specific aims of this dissertation thus were to examine: (1) the relation between different levels of anxiety and youth functional impairment ratings; (2) incremental validity of the Children Global Assessment Scale (CGAS); (3) the mediating role of anxiety symptom reduction on youth functional impairment ratings; (4) the directionality of change between anxiety symptom reduction and youth functional impairment; (5) the moderating effects of youth age, sex, and ethnicity on the mediated relation between youth anxiety symptom reduction and change in functional impairment; and (6) an agreement (or lack thereof) between youths and their parents in their views of change in youth functional impairment vis-à-vis anxiety symptom reduction. ^ The results were analyzed using archival data set acquired from 183 youths and their mothers. Research questions were tested using SPSS and structural equation modeling techniques in Mplus. ^ The results supported the efficacy of psychosocial treatments to reduce the severity of youth anxiety symptoms and its associated functional impairment. Moreover, the results revealed that at posttreatment, youths who scored either low or medium on anxiety levels scored significantly lower on impairment, than youths who scored high on anxiety levels. Incremental validity of the CGAS was also revealed across all assessment points and informants in my sample. In addition, the results indicated the mediating role of anxiety symptom reduction with respect to change in youth functional impairment at posttest, regardless of the youth’s age, sex, and ethnicity. No significant findings were observed with regard to the bidirectionality and an informant disagreement vis-à-vis the relation between anxiety symptom reduction and change in functional impairment. ^ The study’s main contributions and potential implications on theoretical, empirical, and clinical levels are further discussed. The emphasis is on the need to enhance existing evidence-based treatments and develop innovative treatment models that will not only reduce youth’s symptoms (such anxiety) but also evoke genuine and palpable improvements in lives of youths and their families.^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Buildings and other infrastructures located in the coastal regions of the US have a higher level of wind vulnerability. Reducing the increasing property losses and causalities associated with severe windstorms has been the central research focus of the wind engineering community. The present wind engineering toolbox consists of building codes and standards, laboratory experiments, and field measurements. The American Society of Civil Engineers (ASCE) 7 standard provides wind loads only for buildings with common shapes. For complex cases it refers to physical modeling. Although this option can be economically viable for large projects, it is not cost-effective for low-rise residential houses. To circumvent these limitations, a numerical approach based on the techniques of Computational Fluid Dynamics (CFD) has been developed. The recent advance in computing technology and significant developments in turbulence modeling is making numerical evaluation of wind effects a more affordable approach. The present study targeted those cases that are not addressed by the standards. These include wind loads on complex roofs for low-rise buildings, aerodynamics of tall buildings, and effects of complex surrounding buildings. Among all the turbulence models investigated, the large eddy simulation (LES) model performed the best in predicting wind loads. The application of a spatially evolving time-dependent wind velocity field with the relevant turbulence structures at the inlet boundaries was found to be essential. All the results were compared and validated with experimental data. The study also revealed CFD's unique flow visualization and aerodynamic data generation capabilities along with a better understanding of the complex three-dimensional aerodynamics of wind-structure interactions. With the proper modeling that realistically represents the actual turbulent atmospheric boundary layer flow, CFD can offer an economical alternative to the existing wind engineering tools. CFD's easy accessibility is expected to transform the practice of structural design for wind, resulting in more wind-resilient and sustainable systems by encouraging optimal aerodynamic and sustainable structural/building design. Thus, this method will help ensure public safety and reduce economic losses due to wind perils.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The low-frequency electromagnetic compatibility (EMC) is an increasingly important aspect in the design of practical systems to ensure the functional safety and reliability of complex products. The opportunities for using numerical techniques to predict and analyze system's EMC are therefore of considerable interest in many industries. As the first phase of study, a proper model, including all the details of the component, was required. Therefore, the advances in EMC modeling were studied with classifying analytical and numerical models. The selected model was finite element (FE) modeling, coupled with the distributed network method, to generate the model of the converter's components and obtain the frequency behavioral model of the converter. The method has the ability to reveal the behavior of parasitic elements and higher resonances, which have critical impacts in studying EMI problems. For the EMC and signature studies of the machine drives, the equivalent source modeling was studied. Considering the details of the multi-machine environment, including actual models, some innovation in equivalent source modeling was performed to decrease the simulation time dramatically. Several models were designed in this study and the voltage current cube model and wire model have the best result. The GA-based PSO method is used as the optimization process. Superposition and suppression of the fields in coupling the components were also studied and verified. The simulation time of the equivalent model is 80-100 times lower than the detailed model. All tests were verified experimentally. As the application of EMC and signature study, the fault diagnosis and condition monitoring of an induction motor drive was developed using radiated fields. In addition to experimental tests, the 3DFE analysis was coupled with circuit-based software to implement the incipient fault cases. The identification was implemented using ANN for seventy various faulty cases. The simulation results were verified experimentally. Finally, the identification of the types of power components were implemented. The results show that it is possible to identify the type of components, as well as the faulty components, by comparing the amplitudes of their stray field harmonics. The identification using the stray fields is nondestructive and can be used for the setups that cannot go offline and be dismantled

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The optimization of the timing parameters of traffic signals provides for efficient operation of traffic along a signalized transportation system. Optimization tools with macroscopic simulation models have been used to determine optimal timing plans. These plans have been, in some cases, evaluated and fine tuned using microscopic simulation tools. A number of studies show inconsistencies between optimization tool results based on macroscopic simulation and the results obtained from microscopic simulation. No attempts have been made to determine the reason behind these inconsistencies. This research investigates whether adjusting the parameters of macroscopic simulation models to correspond to the calibrated microscopic simulation model parameters can reduce said inconsistencies. The adjusted parameters include platoon dispersion model parameters, saturation flow rates, and cruise speeds. The results from this work show that adjusting cruise speeds and saturation flow rates can have significant impacts on improving the optimization/macroscopic simulation results as assessed by microscopic simulation models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ensuring the correctness of software has been the major motivation in software research, constituting a Grand Challenge. Due to its impact in the final implementation, one critical aspect of software is its architectural design. By guaranteeing a correct architectural design, major and costly flaws can be caught early on in the development cycle. Software architecture design has received a lot of attention in the past years, with several methods, techniques and tools developed. However, there is still more to be done, such as providing adequate formal analysis of software architectures. On these regards, a framework to ensure system dependability from design to implementation has been developed at FIU (Florida International University). This framework is based on SAM (Software Architecture Model), an ADL (Architecture Description Language), that allows hierarchical compositions of components and connectors, defines an architectural modeling language for the behavior of components and connectors, and provides a specification language for the behavioral properties. The behavioral model of a SAM model is expressed in the form of Petri nets and the properties in first order linear temporal logic. This dissertation presents a formal verification and testing approach to guarantee the correctness of Software Architectures. The Software Architectures studied are expressed in SAM. For the formal verification approach, the technique applied was model checking and the model checker of choice was Spin. As part of the approach, a SAM model is formally translated to a model in the input language of Spin and verified for its correctness with respect to temporal properties. In terms of testing, a testing approach for SAM architectures was defined which includes the evaluation of test cases based on Petri net testing theory to be used in the testing process at the design level. Additionally, the information at the design level is used to derive test cases for the implementation level. Finally, a modeling and analysis tool (SAM tool) was implemented to help support the design and analysis of SAM models. The results show the applicability of the approach to testing and verification of SAM models with the aid of the SAM tool.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Buildings and other infrastructures located in the coastal regions of the US have a higher level of wind vulnerability. Reducing the increasing property losses and causalities associated with severe windstorms has been the central research focus of the wind engineering community. The present wind engineering toolbox consists of building codes and standards, laboratory experiments, and field measurements. The American Society of Civil Engineers (ASCE) 7 standard provides wind loads only for buildings with common shapes. For complex cases it refers to physical modeling. Although this option can be economically viable for large projects, it is not cost-effective for low-rise residential houses. To circumvent these limitations, a numerical approach based on the techniques of Computational Fluid Dynamics (CFD) has been developed. The recent advance in computing technology and significant developments in turbulence modeling is making numerical evaluation of wind effects a more affordable approach. The present study targeted those cases that are not addressed by the standards. These include wind loads on complex roofs for low-rise buildings, aerodynamics of tall buildings, and effects of complex surrounding buildings. Among all the turbulence models investigated, the large eddy simulation (LES) model performed the best in predicting wind loads. The application of a spatially evolving time-dependent wind velocity field with the relevant turbulence structures at the inlet boundaries was found to be essential. All the results were compared and validated with experimental data. The study also revealed CFD’s unique flow visualization and aerodynamic data generation capabilities along with a better understanding of the complex three-dimensional aerodynamics of wind-structure interactions. With the proper modeling that realistically represents the actual turbulent atmospheric boundary layer flow, CFD can offer an economical alternative to the existing wind engineering tools. CFD’s easy accessibility is expected to transform the practice of structural design for wind, resulting in more wind-resilient and sustainable systems by encouraging optimal aerodynamic and sustainable structural/building design. Thus, this method will help ensure public safety and reduce economic losses due to wind perils.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The low-frequency electromagnetic compatibility (EMC) is an increasingly important aspect in the design of practical systems to ensure the functional safety and reliability of complex products. The opportunities for using numerical techniques to predict and analyze system’s EMC are therefore of considerable interest in many industries. As the first phase of study, a proper model, including all the details of the component, was required. Therefore, the advances in EMC modeling were studied with classifying analytical and numerical models. The selected model was finite element (FE) modeling, coupled with the distributed network method, to generate the model of the converter’s components and obtain the frequency behavioral model of the converter. The method has the ability to reveal the behavior of parasitic elements and higher resonances, which have critical impacts in studying EMI problems. For the EMC and signature studies of the machine drives, the equivalent source modeling was studied. Considering the details of the multi-machine environment, including actual models, some innovation in equivalent source modeling was performed to decrease the simulation time dramatically. Several models were designed in this study and the voltage current cube model and wire model have the best result. The GA-based PSO method is used as the optimization process. Superposition and suppression of the fields in coupling the components were also studied and verified. The simulation time of the equivalent model is 80-100 times lower than the detailed model. All tests were verified experimentally. As the application of EMC and signature study, the fault diagnosis and condition monitoring of an induction motor drive was developed using radiated fields. In addition to experimental tests, the 3DFE analysis was coupled with circuit-based software to implement the incipient fault cases. The identification was implemented using ANN for seventy various faulty cases. The simulation results were verified experimentally. Finally, the identification of the types of power components were implemented. The results show that it is possible to identify the type of components, as well as the faulty components, by comparing the amplitudes of their stray field harmonics. The identification using the stray fields is nondestructive and can be used for the setups that cannot go offline and be dismantled