3 resultados para Environmental disaster
em Digital Commons at Florida International University
Resumo:
The first essay developed a respondent model of Bayesian updating for a double-bound dichotomous choice (DB-DC) contingent valuation methodology. I demonstrated by way of data simulations that current DB-DC identifications of true willingness-to-pay (WTP) may often fail given this respondent Bayesian updating context. Further simulations demonstrated that a simple extension of current DB-DC identifications derived explicitly from the Bayesian updating behavioral model can correct for much of the WTP bias. Additional results provided caution to viewing respondents as acting strategically toward the second bid. Finally, an empirical application confirmed the simulation outcomes. The second essay applied a hedonic property value model to a unique water quality (WQ) dataset for a year-round, urban, and coastal housing market in South Florida, and found evidence that various WQ measures affect waterfront housing prices in this setting. However, the results indicated that this relationship is not consistent across any of the six particular WQ variables used, and is furthermore dependent upon the specific descriptive statistic employed to represent the WQ measure in the empirical analysis. These results continue to underscore the need to better understand both the WQ measure and its statistical form homebuyers use in making their purchase decision. The third essay addressed a limitation to existing hurricane evacuation modeling aspects by developing a dynamic model of hurricane evacuation behavior. A household's evacuation decision was framed as an optimal stopping problem where every potential evacuation time period prior to the actual hurricane landfall, the household's optimal choice is to either evacuate, or to wait one more time period for a revised hurricane forecast. A hypothetical two-period model of evacuation and a realistic multi-period model of evacuation that incorporates actual forecast and evacuation cost data for my designated Gulf of Mexico region were developed for the dynamic analysis. Results from the multi-period model were calibrated with existing evacuation timing data from a number of hurricanes. Given the calibrated dynamic framework, a number of policy questions that plausibly affect the timing of household evacuations were analyzed, and a deeper understanding of existing empirical outcomes in regard to the timing of the evacuation decision was achieved.
Resumo:
The first essay developed a respondent model of Bayesian updating for a double-bound dichotomous choice (DB-DC) contingent valuation methodology. I demonstrated by way of data simulations that current DB-DC identifications of true willingness-to-pay (WTP) may often fail given this respondent Bayesian updating context. Further simulations demonstrated that a simple extension of current DB-DC identifications derived explicitly from the Bayesian updating behavioral model can correct for much of the WTP bias. Additional results provided caution to viewing respondents as acting strategically toward the second bid. Finally, an empirical application confirmed the simulation outcomes. The second essay applied a hedonic property value model to a unique water quality (WQ) dataset for a year-round, urban, and coastal housing market in South Florida, and found evidence that various WQ measures affect waterfront housing prices in this setting. However, the results indicated that this relationship is not consistent across any of the six particular WQ variables used, and is furthermore dependent upon the specific descriptive statistic employed to represent the WQ measure in the empirical analysis. These results continue to underscore the need to better understand both the WQ measure and its statistical form homebuyers use in making their purchase decision. The third essay addressed a limitation to existing hurricane evacuation modeling aspects by developing a dynamic model of hurricane evacuation behavior. A household’s evacuation decision was framed as an optimal stopping problem where every potential evacuation time period prior to the actual hurricane landfall, the household’s optimal choice is to either evacuate, or to wait one more time period for a revised hurricane forecast. A hypothetical two-period model of evacuation and a realistic multi-period model of evacuation that incorporates actual forecast and evacuation cost data for my designated Gulf of Mexico region were developed for the dynamic analysis. Results from the multi-period model were calibrated with existing evacuation timing data from a number of hurricanes. Given the calibrated dynamic framework, a number of policy questions that plausibly affect the timing of household evacuations were analyzed, and a deeper understanding of existing empirical outcomes in regard to the timing of the evacuation decision was achieved.
Resumo:
Disasters are complex events characterized by damage to key infrastructure and population displacements into disaster shelters. Assessing the living environment in shelters during disasters is a crucial health security concern. Until now, jurisdictional knowledge and preparedness on those assessment methods, or deficiencies found in shelters is limited. A cross-sectional survey (STUSA survey) ascertained knowledge and preparedness for those assessments in all 50 states, DC, and 5 US territories. Descriptive analysis of overall knowledge and preparedness was performed. Fisher’s exact statistics analyzed differences between two groups: jurisdiction type and population size. Two logistic regression models analyzed earthquakes and hurricane risks as predictors of knowledge and preparedness. A convenience sample of state shelter assessments records (n=116) was analyzed to describe environmental health deficiencies found during selected events. Overall, 55 (98%) of jurisdictions responded (states and territories) and appeared to be knowledgeable of these assessments (states 92%, territories 100%, p = 1.000), and engaged in disaster planning with shelter partners (states 96%, territories 83%, p = 0.564). Few had shelter assessment procedures (states 53%, territories 50%, p = 1.000); or training in disaster shelter assessments (states 41%, 60% territories, p = 0.638). Knowledge or preparedness was not predicted by disaster risks, population size, and jurisdiction type in neither model. Knowledge: hurricane (Adjusted OR 0.69, 95% C.I. 0.06-7.88); earthquake (OR 0.82, 95% C.I. 0.17-4.06); and both risks (OR 1.44, 95% C.I. 0.24-8.63); preparedness model: hurricane (OR 1.91, 95% C.I. 0.06-20.69); earthquake (OR 0.47, 95% C.I. 0.7-3.17); and both risks (OR 0.50, 95% C.I. 0.06-3.94). Environmental health deficiencies documented in shelter assessments occurred mostly in: sanitation (30%); facility (17%); food (15%); and sleeping areas (12%); and during ice storms and tornadoes. More research is needed in the area of environmental health assessments of disaster shelters, particularly, in those areas that may provide better insight into the living environment of all shelter occupants and potential effects in disaster morbidity and mortality. Also, to evaluate the effectiveness and usefulness of these assessments methods and the data available on environmental health deficiencies in risk management to protect those at greater risk in shelter facilities during disasters.