8 resultados para Energy-related operations
em Digital Commons at Florida International University
Resumo:
A man-machine system called teleoperator system has been developed to work in hazardous environments such as nuclear reactor plants. Force reflection is a type of force feedback in which forces experienced by the remote manipulator are fed back to the manual controller. In a force-reflecting teleoperation system, the operator uses the manual controller to direct the remote manipulator and receives visual information from a video image and/or graphical animation on the computer screen. This thesis presents the design of a portable Force-Reflecting Manual Controller (FRMC) for the teleoperation of tasks such as hazardous material handling, waste cleanup, and space-related operations. The work consists of the design and construction of a prototype 1-Degree-of-Freedom (DOF) FRMC, the development of the Graphical User Interface (GUI), and system integration. Two control strategies - PID and fuzzy logic controllers are developed and experimentally tested. The system response of each is analyzed and evaluated. In addition, the concept of a telesensation system is introduced, and a variety of design alternatives of a 3-DOF FRMC are proposed for future development.
Controls on sensible heat and latent energy fluxes from a short-hydroperiod Florida Everglades marsh
Resumo:
Little is known of energy balance in low latitude wetlands where there is a year-round growing season and a climate best defined by wet and dry seasons. The Florida Everglades is a highly managed and extensive subtropical wetland that exerts a substantial influence on the hydrology and climate of the south Florida region. However, the effects of seasonality and active water management on energy balance in the Everglades ecosystem are poorly understood. An eddy covariance and micrometeorological tower was established in a short-hydroperiod Everglades marsh to examine the dominant environmental controls on sensible heat (H) and latent energy (LE) fluxes, as well as the effects of seasonality on these parameters. Seasonality differentially affected H and LE fluxes in this marsh, such that H was principally dominant in the dry season and LE was strongly dominant in the wet season. The Bowen ratio was high for much of the dry season (1.5–2.4), but relatively low (H and LE fluxes across nearly all seasons and years (). However, the 2009 dry season LE data were not consistent with this relationship () because of low seasonal variation in LE following a prolonged end to the previous wet season. In addition to net radiation, H and LE fluxes were significantly related to soil volumetric water content (VWC), water depth, air temperature, and occasionally vapor pressure deficit. Given that VWC and water depth were determined in part by water management decisions, it is clear that human actions have the ability to influence the mode of energy dissipation from this ecosystem. Impending modifications to water management under the Comprehensive Everglades Restoration Plan may shift the dominant turbulent flux from this ecosystem further toward LE, and this change will likely affect local hydrology and climate.
Resumo:
Latin America, a region rich in both energy resources and native heritage, faces a rising politico-social confrontation that has been growing for over two decades. While resources like oil and gas are exploited to enhance the state’s economic growth, indigenous groups feel threatened because the operations related to this exploitation are infringing on their homelands. Furthermore, they believe that the potential resource wealth found in these environmentally-sensitive regions is provoking an “intrusion” in their ancestral territory of either government agencies or corporations allowed by governmental decree. Indigenous groups, which have achieved greater political voice over the past decade, are protesting against government violations. These protests have reached the media and received international attention, leading the discourse on topics such as civil and human rights violations. When this happens, the State finds itself “between a rock and a hard place”: In a debate between indigenous groups’ rights and economic sustainability.
Resumo:
In her piece entitled - Current Status Of Collectability Of Gaming-Related Credit Dollars - Ruth Lisa Wenof, Graduate Student at Florida International University initially states: “Credit is an important part of incentives used to lure gamblers to gaming establishments. However, a collection problem exists in casinos retrieving gaming-related credit losses of individuals living in states where gambling is illegal. The author discusses the history of this question, citing recent cases related to Atlantic City.” This author’s article is substantially laden with legal cases associated with casinos in New Jersey; Atlantic City to be exact. The piece is specific to the segment of the gaming industry that the title suggests, and as such is written in a decidedly technical style. “Legalized casino gaming, which was approved by the citizens of New Jersey on November 8, 1976, has been used as a unique tool of urban redevelopment for Atlantic City,” Wenof says in providing some background on this ‘Jersey shore municipality. “Since Resorts International opened its casino…revenues from gambling have increased rapidly. Resorts' gross win in 1978 was $134 million,” Wenof says. “Since then, the combined gross win of the city's 11 casinos has been just shy of $7.5 billion.” The author points out that the competition for casino business is fierce and that credit dollars play an integral role in soliciting such business. “Credit plays a most important part in every casino hotel. This type of gambler is given every incentive to come to a particular hotel,” says the author. “Airplanes, limousines, suites, free meals, and beverages all become a package for the person who can sign a marker. The credit department of a casino is similar to that of a bank. A banker who loans money knows that it must be paid back or his bank will fail. This is indeed true of a casino,” Wenof warns in outlining the potential problem that this article is fundamentally designed around. In providing further background on credit essentials and possible pitfalls, Wenof affords: “…on the Casino Control Act the State Commission of Investigation recommended to the legislature that casinos should not be allowed to extend credit at all, by reason of a concern for illicit diversion of revenues, which is popularly called skimming within the industry…” Although skimming is an after-the-fact problem, and is parenthetic to loan returns, it is an important element of the collective [sic] credit scheme. “A collection problem of prime importance is if a casino can get back gaming-related credit dollars advanced by the casino to a gambler who lives in a state where gambling is illegal,” is a central factor to consider, Wenof reveals. This is a primary focus of this article. Wenof touches on the social/societal implications of gambling, and then continues the discussion by citing a host of legal cases pertaining to debt collection.
Resumo:
In this article the authors explore the performance-related employee behaviors that are the most troublesome in food service. Four subsegments of food service were surveyed and differences in profit and not-for-profit operations analyzed. Significant differences were found between the two groups, with for-profit operations indicating more severe problems in all but one behavior category.
Resumo:
The main goal of this dissertation was to study two- and three-nucleon Short Range Correlations (SRCs) in high energy three-body breakup of 3He nucleus in 3He(e, e'NN) N reaction. SRCs are characterized by quantum fluctuations in nuclei during which constituent nucleons partially overlap with each other. ^ A theoretical framework is developed within the Generalized Eikonal Approximation (GEA) which upgrades existing medium-energy methods that are inapplicable for high momentum and energy transfer reactions. High momentum and energy transfer is required to provide sufficient resolution for probing SRCs. GEA is a covariant theory which is formulated through the effective Feynman diagrammatic rules. It allows self-consistent calculation of single and double re-scatterings amplitudes which are present in three-body breakup processes. The calculations were carried out in detail and the analytical result for the differential cross section of 3He(e, e'NN)N reaction was derived in a form applicable for programming and numerical calculations. The corresponding computer code has been developed and the results of computation were compared to the published experimental data, showing satisfactory agreement for a wide range of values of missing momenta. ^ In addition to the high energy approximation this study exploited the exclusive nature of the process under investigation to gain more information about the SRCs. The description of the exclusive 3He( e, e'NN)N reaction has been done using the formalism of the nuclear decay function, which is a practically unexplored quantity and is related to the conventional spectral function through the integration of the phase space of the recoil nucleons. Detailed investigation showed that the decay function clearly exhibits the main features of two- and three-nucleon correlations. Four highly practical types of SRCs in 3He nucleus were discussed in great detail for different orders of the final state re-interactions using the decay function as an unique identifying tool. ^ The overall conclusion in this dissertation suggests that the investigation of the decay function opens up a completely new venue in studies of short range nuclear properties. ^
Resumo:
Distributed Generation (DG) from alternate sources and smart grid technologies represent good solutions for the increase in energy demands. Employment of these DG assets requires solutions for the new technical challenges that are accompanied by the integration and interconnection into operational power systems. A DG infrastructure comprised of alternate energy sources in addition to conventional sources, is developed as a test bed. The test bed is operated by synchronizing, wind, photovoltaic, fuel cell, micro generator and energy storage assets, in addition to standard AC generators. Connectivity of these DG assets is tested for viability and for their operational characteristics. The control and communication layers for dynamic operations are developed to improve the connectivity of alternates to the power system. A real time application for the operation of alternate sources in microgrids is developed. Multi agent approach is utilized to improve stability and sequences of actions for black start are implemented. Experiments for control and stability issues related to dynamic operation under load conditions have been conducted and verified.
Resumo:
The main goal of this dissertation was to study two- and three-nucleon Short Range Correlations (SRCs) in high energy three-body breakup of 3He nucleus in 3He(e, e'NN)N reaction. SRCs are characterized by quantum fluctuations in nuclei during which constituent nucleons partially overlap with each other. A theoretical framework is developed within the Generalized Eikonal Approximation (GEA) which upgrades existing medium-energy methods that are inapplicable for high momentum and energy transfer reactions. High momentum and energy transfer is required to provide sufficient resolution for probing SRCs. GEA is a covariant theory which is formulated through the effective Feynman diagrammatic rules. It allows self-consistent calculation of single and double re-scatterings amplitudes which are present in three-body breakup processes. The calculations were carried out in detail and the analytical result for the differential cross section of 3He(e, e'NN)Nreaction was derived in a form applicable for programming and numerical calculations. The corresponding computer code has been developed and the results of computation were compared to the published experimental data, showing satisfactory agreement for a wide range of values of missing momenta. In addition to the high energy approximation this study exploited the exclusive nature of the process under investigation to gain more information about the SRCs. The description of the exclusive 3He(e, e'NN)N reaction has been done using the formalism of the nuclear decay function, which is a practically unexplored quantity and is related to the conventional spectral function through the integration of the phase space of the recoil nucleons. Detailed investigation showed that the decay function clearly exhibits the main features of two- and three-nucleon correlations. Four highly practical types of SRCs in 3He nucleus were discussed in great detail for different orders of the final state re-interactions using the decay function as an unique identifying tool. The overall conclusion in this dissertation suggests that the investigation of the decay function opens up a completely new venue in studies of short range nuclear properties.