4 resultados para Energy consumed

em Digital Commons at Florida International University


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Modern data centers host hundreds of thousands of servers to achieve economies of scale. Such a huge number of servers create challenges for the data center network (DCN) to provide proportionally large bandwidth. In addition, the deployment of virtual machines (VMs) in data centers raises the requirements for efficient resource allocation and find-grained resource sharing. Further, the large number of servers and switches in the data center consume significant amounts of energy. Even though servers become more energy efficient with various energy saving techniques, DCN still accounts for 20% to 50% of the energy consumed by the entire data center. The objective of this dissertation is to enhance DCN performance as well as its energy efficiency by conducting optimizations on both host and network sides. First, as the DCN demands huge bisection bandwidth to interconnect all the servers, we propose a parallel packet switch (PPS) architecture that directly processes variable length packets without segmentation-and-reassembly (SAR). The proposed PPS achieves large bandwidth by combining switching capacities of multiple fabrics, and it further improves the switch throughput by avoiding padding bits in SAR. Second, since certain resource demands of the VM are bursty and demonstrate stochastic nature, to satisfy both deterministic and stochastic demands in VM placement, we propose the Max-Min Multidimensional Stochastic Bin Packing (M3SBP) algorithm. M3SBP calculates an equivalent deterministic value for the stochastic demands, and maximizes the minimum resource utilization ratio of each server. Third, to provide necessary traffic isolation for VMs that share the same physical network adapter, we propose the Flow-level Bandwidth Provisioning (FBP) algorithm. By reducing the flow scheduling problem to multiple stages of packet queuing problems, FBP guarantees the provisioned bandwidth and delay performance for each flow. Finally, while DCNs are typically provisioned with full bisection bandwidth, DCN traffic demonstrates fluctuating patterns, we propose a joint host-network optimization scheme to enhance the energy efficiency of DCNs during off-peak traffic hours. The proposed scheme utilizes a unified representation method that converts the VM placement problem to a routing problem and employs depth-first and best-fit search to find efficient paths for flows.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Modern data centers host hundreds of thousands of servers to achieve economies of scale. Such a huge number of servers create challenges for the data center network (DCN) to provide proportionally large bandwidth. In addition, the deployment of virtual machines (VMs) in data centers raises the requirements for efficient resource allocation and find-grained resource sharing. Further, the large number of servers and switches in the data center consume significant amounts of energy. Even though servers become more energy efficient with various energy saving techniques, DCN still accounts for 20% to 50% of the energy consumed by the entire data center. The objective of this dissertation is to enhance DCN performance as well as its energy efficiency by conducting optimizations on both host and network sides. First, as the DCN demands huge bisection bandwidth to interconnect all the servers, we propose a parallel packet switch (PPS) architecture that directly processes variable length packets without segmentation-and-reassembly (SAR). The proposed PPS achieves large bandwidth by combining switching capacities of multiple fabrics, and it further improves the switch throughput by avoiding padding bits in SAR. Second, since certain resource demands of the VM are bursty and demonstrate stochastic nature, to satisfy both deterministic and stochastic demands in VM placement, we propose the Max-Min Multidimensional Stochastic Bin Packing (M3SBP) algorithm. M3SBP calculates an equivalent deterministic value for the stochastic demands, and maximizes the minimum resource utilization ratio of each server. Third, to provide necessary traffic isolation for VMs that share the same physical network adapter, we propose the Flow-level Bandwidth Provisioning (FBP) algorithm. By reducing the flow scheduling problem to multiple stages of packet queuing problems, FBP guarantees the provisioned bandwidth and delay performance for each flow. Finally, while DCNs are typically provisioned with full bisection bandwidth, DCN traffic demonstrates fluctuating patterns, we propose a joint host-network optimization scheme to enhance the energy efficiency of DCNs during off-peak traffic hours. The proposed scheme utilizes a unified representation method that converts the VM placement problem to a routing problem and employs depth-first and best-fit search to find efficient paths for flows.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Wireless Sensor Networks (WSNs) are widely used for various civilian and military applications, and thus have attracted significant interest in recent years. This work investigates the important problem of optimal deployment of WSNs in terms of coverage and energy consumption. Five deployment algorithms are developed for maximal sensing range and minimal energy consumption in order to provide optimal sensing coverage and maximum lifetime. Also, all developed algorithms include self-healing capabilities in order to restore the operation of WSNs after a number of nodes have become inoperative. Two centralized optimization algorithms are developed, one based on Genetic Algorithms (GAs) and one based on Particle Swarm Optimization (PSO). Both optimization algorithms use powerful central nodes to calculate and obtain the global optimum outcomes. The GA is used to determine the optimal tradeoff between network coverage and overall distance travelled by fixed range sensors. The PSO algorithm is used to ensure 100% network coverage and minimize the energy consumed by mobile and range-adjustable sensors. Up to 30% - 90% energy savings can be provided in different scenarios by using the developed optimization algorithms thereby extending the lifetime of the sensor by 1.4 to 10 times. Three distributed optimization algorithms are also developed to relocate the sensors and optimize the coverage of networks with more stringent design and cost constraints. Each algorithm is cooperatively executed by all sensors to achieve better coverage. Two of our algorithms use the relative positions between sensors to optimize the coverage and energy savings. They provide 20% to 25% more energy savings than existing solutions. Our third algorithm is developed for networks without self-localization capabilities and supports the optimal deployment of such networks without requiring the use of expensive geolocation hardware or energy consuming localization algorithms. This is important for indoor monitoring applications since current localization algorithms cannot provide good accuracy for sensor relocation algorithms in such indoor environments. Also, no sensor redeployment algorithms, which can operate without self-localization systems, developed before our work.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Physical activity is recommended to facilitate weight management. However, some individuals may be unable to successfully manage their weight due to certain psychological and cognitive factors that trigger them to compensate for calories expended in exercise. The primary purpose of this study was to evaluate the effect of moderate-intensity exercise on lunch and 12-hour post-exercise energy intake (PE-EI) in normal weight and overweight sedentary males. Perceived hunger, mood, carbohydrate intake from beverages, and accuracy in estimating energy intake (EI) and energy expenditure (EE) were also assessed. The study consisted of two conditions, exercise (treadmill walking) and rest (sitting), with each participant completing each condition, in a counterbalanced-crossover design on two days. Eighty males, mean age 30 years (SD=8) were categorized into five groups according to weight (normal-/overweight), dietary restraint level (high/low), and dieting status (yes/no). Results of repeated measures, 5x2 ANOVA indicated that the main effects of condition and group, and the interaction were not significant for lunch or 12-hour PE-EI. Among overweight participants, dieters consumed significantly (p<0.05) fewer calories than non-dieters at lunch (M=822 vs. M=1149) and over 12 hours (M=1858 vs. M =2497). Overall, participants’ estimated exercise EE was significantly (p<0.01) higher than actual exercise EE, and estimated resting EE was significantly (p<0.001) lower than actual resting EE. Participants significantly (p<0.001) underestimated EI at lunch on both experimental days. Perceived hunger was significantly (p<0.05) lower after exercise (M=49 mm, SEM=3) than after rest (M=57 mm, SEM=3). Mood scores and carbohydrate intake from beverages were not influenced by weight, dietary restraint, and dieting status. In conclusion, a single bout of moderate-intensity exercise did not influence PE-EI in sedentary males in reference to weight, dietary restraint, and dieting status, suggesting that this population may not be at risk for overeating in response to exercise. Therefore, exercise can be prescribed and used as an effective tool for weight management. Results also indicated that there was an inability to accurately estimate EI (ad libitum lunch meal) and EE (60 minutes of moderate-intensity exercise). Inaccuracies in the estimation of calories for EI and EE could have the potential to unfavorably impact weight management.