4 resultados para End users

em Digital Commons at Florida International University


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Global connectivity, for anyone, at anyplace, at anytime, to provide high-speed, high-quality, and reliable communication channels for mobile devices, is now becoming a reality. The credit mainly goes to the recent technological advances in wireless communications comprised of a wide range of technologies, services, and applications to fulfill the particular needs of end-users in different deployment scenarios (Wi-Fi, WiMAX, and 3G/4G cellular systems). In such a heterogeneous wireless environment, one of the key ingredients to provide efficient ubiquitous computing with guaranteed quality and continuity of service is the design of intelligent handoff algorithms. Traditional single-metric handoff decision algorithms, such as Received Signal Strength (RSS) based, are not efficient and intelligent enough to minimize the number of unnecessary handoffs, decision delays, and call-dropping and/or blocking probabilities. This research presented a novel approach for the design and implementation of a multi-criteria vertical handoff algorithm for heterogeneous wireless networks. Several parallel Fuzzy Logic Controllers were utilized in combination with different types of ranking algorithms and metric weighting schemes to implement two major modules: the first module estimated the necessity of handoff, and the other module was developed to select the best network as the target of handoff. Simulations based on different traffic classes, utilizing various types of wireless networks were carried out by implementing a wireless test-bed inspired by the concept of Rudimentary Network Emulator (RUNE). Simulation results indicated that the proposed scheme provided better performance in terms of minimizing the unnecessary handoffs, call dropping, and call blocking and handoff blocking probabilities. When subjected to Conversational traffic and compared against the RSS-based reference algorithm, the proposed scheme, utilizing the FTOPSIS ranking algorithm, was able to reduce the average outage probability of MSs moving with high speeds by 17%, new call blocking probability by 22%, the handoff blocking probability by 16%, and the average handoff rate by 40%. The significant reduction in the resulted handoff rate provides MS with efficient power consumption, and more available battery life. These percentages indicated a higher probability of guaranteed session continuity and quality of the currently utilized service, resulting in higher user satisfaction levels.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A heterogeneous wireless network is characterized by the presence of different wireless access technologies that coexist in an overlay fashion. These wireless access technologies usually differ in terms of their operating parameters. On the other hand, Mobile Stations (MSs) in a heterogeneous wireless network are equipped with multiple interfaces to access different types of services from these wireless access technologies. The ultimate goal of these heterogeneous wireless networks is to provide global connectivity with efficient ubiquitous computing to these MSs based on the Always Best Connected (ABC) principle. This is where the need for intelligent and efficient Vertical Handoffs (VHOs) between wireless technologies in a heterogeneous environment becomes apparent. This paper presents the design and implementation of a fuzzy multicriteria based Vertical Handoff Necessity Estimation (VHONE) scheme that determines the proper time for VHO, while considering the continuity and quality of the currently utilized service, and the end-users' satisfaction.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This poster presentation from the May 2015 Florida Library Association Conference, along with the Everglades Explorer discovery portal at http://ee.fiu.edu, demonstrates how traditional bibliographic and curatorial principles can be applied to: 1) selection, cross-walking and aggregation of metadata linking end-users to wide-spread digital resources from multiple silos; 2) harvesting of select PDFs, HTML and media for web archiving and access; 3) selection of CMS domains, sub-domains and folders for targeted searching using an API. Choosing content for this discovery portal is comparable to past scholarly practice of creating and publishing subject bibliographies, except metadata and data are housed in relational databases. This new and yet traditional capacity coincides with: Growth of bibliographic utilities (MarcEdit); Evolution of open-source discovery systems (eXtensible Catalog); Development of target-capable web crawling and archiving systems (Archive-it); and specialized search APIs (Google). At the same time, historical and technical changes – specifically the increasing fluidity and re-purposing of syndicated metadata – make this possible. It equally stems from the expansion of freely accessible digitized legacy and born-digital resources. Innovation principles helped frame the process by which the thematic Everglades discovery portal was created at Florida International University. The path -- to providing for more effective searching and co-location of digital scientific, educational and historical material related to the Everglades -- is contextualized through five concepts found within Dyer and Christensen’s “The Innovator’s DNA: Mastering the five skills of disruptive innovators (2011). The project also aligns with Ranganathan’s Laws of Library Science, especially the 4th Law -- to "save the time of the user.”

Relevância:

60.00% 60.00%

Publicador:

Resumo:

With the exponential growth of the usage of web-based map services, the web GIS application has become more and more popular. Spatial data index, search, analysis, visualization and the resource management of such services are becoming increasingly important to deliver user-desired Quality of Service. First, spatial indexing is typically time-consuming and is not available to end-users. To address this, we introduce TerraFly sksOpen, an open-sourced an Online Indexing and Querying System for Big Geospatial Data. Integrated with the TerraFly Geospatial database [1-9], sksOpen is an efficient indexing and query engine for processing Top-k Spatial Boolean Queries. Further, we provide ergonomic visualization of query results on interactive maps to facilitate the user’s data analysis. Second, due to the highly complex and dynamic nature of GIS systems, it is quite challenging for the end users to quickly understand and analyze the spatial data, and to efficiently share their own data and analysis results with others. Built on the TerraFly Geo spatial database, TerraFly GeoCloud is an extra layer running upon the TerraFly map and can efficiently support many different visualization functions and spatial data analysis models. Furthermore, users can create unique URLs to visualize and share the analysis results. TerraFly GeoCloud also enables the MapQL technology to customize map visualization using SQL-like statements [10]. Third, map systems often serve dynamic web workloads and involve multiple CPU and I/O intensive tiers, which make it challenging to meet the response time targets of map requests while using the resources efficiently. Virtualization facilitates the deployment of web map services and improves their resource utilization through encapsulation and consolidation. Autonomic resource management allows resources to be automatically provisioned to a map service and its internal tiers on demand. v-TerraFly are techniques to predict the demand of map workloads online and optimize resource allocations, considering both response time and data freshness as the QoS target. The proposed v-TerraFly system is prototyped on TerraFly, a production web map service, and evaluated using real TerraFly workloads. The results show that v-TerraFly can accurately predict the workload demands: 18.91% more accurate; and efficiently allocate resources to meet the QoS target: improves the QoS by 26.19% and saves resource usages by 20.83% compared to traditional peak load-based resource allocation.