6 resultados para Electrophoresis gels
em Digital Commons at Florida International University
Resumo:
Dissolved organic nitrogen (DON) represents the least understood part of the nitrogen cycle. Due to recent methodological developments, proteins now represent a potentially characterisable fraction of DON at the macromolecular level. We have applied polyacrylamide gel electrophoresis to characterise proteins in samples from a range of aquatic environments in the Everglades National Park, Florida, USA. Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) showed that each sample has a complex and characteristic protein distribution. Some proteins appeared to be common to more than one site, and these might derive from dominant higher plant vegetation. Two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) provided better resolution; however, strong background hindered interpretation. Our results suggest that the two techniques can be used in parallel as a tool for protein characterisation: SDS-PAGE to provide a sample-specific fingerprint and 2D-PAGE to focus on the characterisation of individual protein molecules.
Resumo:
Despite the ongoing "war on drugs" the seizure rates for phenethylamines and their analogues have been steadily increasing over the years. The illicit manufacture of these compounds has become big business all over the world making it all the more attractive to the inexperienced "cook". However, as a result, the samples produced are more susceptible to contamination with reactionary byproducts and leftover reagents. These impurities are useful in the analysis of seized drugs as their identities can help to determine the synthetic pathway used to make these drugs and thus, the provenance of these analytes. In the present work two fluorescent dyes, 4-fluoro-7-nitrobenzofurazan and 5-(4,6-dichlorotriazinyl)aminofluorescein, were used to label several phenethylamine analogues for electrophoretic separation with laser-induced fluorescence detection. The large scale to which law enforcement is encountering these compounds has the potential to create a tremendous backlog. In order to combat this, a rapid, sensitive method capable of full automation is required. Through the utilization of the inline derivatization method developed whereby analytes are labeled within the capillary efficiently in a minimum span of time, this can be achieved. The derivatization and separation parameters were optimized on the basis of a variety of experimentally determined factors in order to give highly resolved peaks in the fluorescence spectrum with limits of detection in the low µg/mL range.
Resumo:
Capillary electrophoresis (CE) is a modern analytical technique, which is electrokinetic separation generated by high voltage and taken place inside the small capillaries. In this dissertation, several advanced capillary electrophoresis methods are presented using different approaches of CE and UV and mass spectrometry are utilized as the detection methods. ^ Capillary electrochromatography (CEC), as one of the CE modes, is a recent developed technique which is a hybrid of capillary electrophoresis and high performance liquid chromatography (HPLC). Capillary electrochromatography exhibits advantages of both techniques. In Chapter 2, monolithic capillary column are fabricated using in situ photoinitiation polymerization method. The column was then applied for the separation of six antidepressant compounds. ^ Meanwhile, a simple chiral separation method is developed and presented in Chapter 3. Beta cycodextrin was utilized to achieve the goal of chiral separation. Not only twelve cathinone analytes were separated, but also isomers of several analytes were enantiomerically separated. To better understand the molecular information on the analytes, the TOF-MS system was coupled with the CE. A sheath liquid and a partial filling technique (PFT) were employed to reduce the contamination of MS ionization source. Accurate molecular information was obtained. ^ It is necessary to propose, develop, and optimize new techniques that are suitable for trace-level analysis of samples in forensic, pharmaceutical, and environmental applications. Capillary electrophoresis (CE) was selected for this task, as it requires lower amounts of samples, it simplifies sample preparation, and it has the flexibility to perform separations of neutral and charged molecules as well as enantiomers. ^ Overall, the study demonstrates the versatility of capillary electrophoresis methods in forensic, pharmaceutical, and environmental applications.^
Resumo:
When a suspect's DNA profile is admitted into court as a match to evidence the probability of the perpetrator being another individual must be calculated from database allele frequencies. The two methods used for this calculation are phenotypic frequency and likelihood ratio. Neither of these calculations takes into account substructuring within populations. In these substructured populations the frequency of homozygotes increases and that of heterozygotes usually decreases. The departure from Hardy- Weinberg expectation in a sample population can be estimated using Sewall Wright's Fst statistic. Fst values were calculated in four populations of African descent by comparing allele frequencies at three short tandem repeat loci. This was done by amplifying the three loci in each sample using the Polymerase Chain Reaction and separating these fragments using polyacrylamide gel electrophoresis. The gels were then silver stained and autoradiograms taken, from which allele frequencies were estimated. Fst values averaged 0.007+- 0.005 within populations of African descent and 0.02+- 0.01 between white and black populations.
Resumo:
The presence of harmful algal blooms (HAB) is a growing concern in aquatic environments. Among HAB organisms, cyanobacteria are of special concern because they have been reported worldwide to cause environmental and human health problem through contamination of drinking water. Although several analytical approaches have been applied to monitoring cyanobacteria toxins, conventional methods are costly and time-consuming so that analyses take weeks for field sampling and subsequent lab analysis. Capillary electrophoresis (CE) becomes a particularly suitable analytical separation method that can couple very small samples and rapid separations to a wide range of selective and sensitive detection techniques. This paper demonstrates a method for rapid separation and identification of four microcystin variants commonly found in aquatic environments. CE coupled to UV and electrospray ionization time-of-flight mass spectrometry (ESI-TOF) procedures were developed. All four analytes were separated within 6 minutes. The ESI-TOF experiment provides accurate molecular information, which further identifies analytes.
Resumo:
Capillary electrophoresis (CE) is a modern analytical technique, which is electrokinetic separation generated by high voltage and taken place inside the small capillaries. In this dissertation, several advanced capillary electrophoresis methods are presented using different approaches of CE and UV and mass spectrometry are utilized as the detection methods. Capillary electrochromatography (CEC), as one of the CE modes, is a recent developed technique which is a hybrid of capillary electrophoresis and high performance liquid chromatography (HPLC). Capillary electrochromatography exhibits advantages of both techniques. In Chapter 2, monolithic capillary column are fabricated using in situ photoinitiation polymerization method. The column was then applied for the separation of six antidepressant compounds. Meanwhile, a simple chiral separation method is developed and presented in Chapter 3. Beta cycodextrin was utilized to achieve the goal of chiral separation. Not only twelve cathinone analytes were separated, but also isomers of several analytes were enantiomerically separated. To better understand the molecular information on the analytes, the TOF-MS system was coupled with the CE. A sheath liquid and a partial filling technique (PFT) were employed to reduce the contamination of MS ionization source. Accurate molecular information was obtained. It is necessary to propose, develop, and optimize new techniques that are suitable for trace-level analysis of samples in forensic, pharmaceutical, and environmental applications. Capillary electrophoresis (CE) was selected for this task, as it requires lower amounts of samples, it simplifies sample preparation, and it has the flexibility to perform separations of neutral and charged molecules as well as enantiomers. Overall, the study demonstrates the versatility of capillary electrophoresis methods in forensic, pharmaceutical, and environmental applications.