20 resultados para Electromyography analysis techniques
em Digital Commons at Florida International University
Resumo:
Edible oil is an important contaminant in water and wastewater. Oil droplets smaller than 40 μm may remain in effluent as an emulsion and combine with other contaminants in water. Coagulation/flocculation processes are used to remove oil droplets from water and wastewater. By adding a polymer at proper dose, small oil droplets can be flocculated and separated from water. The purpose of this study was to characterize and analyze the morphology of flocs and floc formation in edible oil-water emulsions by using microscopic image analysis techniques. The fractal dimension, concentration of polymer, effect of pH and temperature are investigated and analyzed to develop a fractal model of the flocs. Three types of edible oil (corn, olive, and sunflower oil) at concentrations of 600 ppm (by volume) were used to determine the optimum polymer dosage and effect of pH and temperature. To find the optimum polymer dose, polymer was added to the oil-water emulsions at concentration of 0.5, 1.0, 1.5, 2.0, 3.0 and 3.5 ppm (by volume). The clearest supernatants obtained from flocculation of corn, olive, and sunflower oil were achieved at polymer dosage of 3.0 ppm producing turbidities of 4.52, 12.90, and 13.10 NTU, respectively. This concentration of polymer was subsequently used to study the effect of pH and temperature on flocculation. The effect of pH was studied at pH 5, 7, 9, and 11 at 30°C. Microscopic image analysis was used to investigate the morphology of flocs in terms of fractal dimension, radius of oil droplets trapped in floc, floc size, and histograms of oil droplet distribution. Fractal dimension indicates the density of oil droplets captured in flocs. By comparison of fractal dimensions, pH was found to be one of the most important factors controlling droplet flocculation. Neutral pH or pH 7 showed the highest degree of flocculation, while acidic (pH 5) and basic pH (pH 9 and pH 11) showed low efficiency of flocculation. The fractal dimensions achieved from flocculation of corn, olive, and sunflower oil at pH 7 and temperature 30°C were 1.2763, 1.3592, and 1.4413, respectively. The effect of temperature was explored at temperatures 20°, 30°, and 40°C and pH 7. The results of flocculation of oil at pH 7 and different temperatures revealed that temperature significantly affected flocculation. The fractal dimension of flocs formed in corn, olive and sunflower oil emulsion at pH 7 and temperature 20°, 30°, and 40°C were 1.82, 1.28, 1.29, 1.62, 1.36, 1.42, 1.36, 1.44, and 1.28, respectively. After comparison of fractal dimension, radius of oil droplets captured, and floc length in each oil type, the optimal flocculation temperature was determined to be 30°C. ^
Resumo:
Petri Nets are a formal, graphical and executable modeling technique for the specification and analysis of concurrent and distributed systems and have been widely applied in computer science and many other engineering disciplines. Low level Petri nets are simple and useful for modeling control flows but not powerful enough to define data and system functionality. High level Petri nets (HLPNs) have been developed to support data and functionality definitions, such as using complex structured data as tokens and algebraic expressions as transition formulas. Compared to low level Petri nets, HLPNs result in compact system models that are easier to be understood. Therefore, HLPNs are more useful in modeling complex systems. ^ There are two issues in using HLPNs—modeling and analysis. Modeling concerns the abstracting and representing the systems under consideration using HLPNs, and analysis deals with effective ways study the behaviors and properties of the resulting HLPN models. In this dissertation, several modeling and analysis techniques for HLPNs are studied, which are integrated into a framework that is supported by a tool. ^ For modeling, this framework integrates two formal languages: a type of HLPNs called Predicate Transition Net (PrT Net) is used to model a system's behavior and a first-order linear time temporal logic (FOLTL) to specify the system's properties. The main contribution of this dissertation with regard to modeling is to develop a software tool to support the formal modeling capabilities in this framework. ^ For analysis, this framework combines three complementary techniques, simulation, explicit state model checking and bounded model checking (BMC). Simulation is a straightforward and speedy method, but only covers some execution paths in a HLPN model. Explicit state model checking covers all the execution paths but suffers from the state explosion problem. BMC is a tradeoff as it provides a certain level of coverage while more efficient than explicit state model checking. The main contribution of this dissertation with regard to analysis is adapting BMC to analyze HLPN models and integrating the three complementary analysis techniques in a software tool to support the formal analysis capabilities in this framework. ^ The SAMTools developed for this framework in this dissertation integrates three tools: PIPE+ for HLPNs behavioral modeling and simulation, SAMAT for hierarchical structural modeling and property specification, and PIPE+Verifier for behavioral verification.^
Resumo:
Petri Nets are a formal, graphical and executable modeling technique for the specification and analysis of concurrent and distributed systems and have been widely applied in computer science and many other engineering disciplines. Low level Petri nets are simple and useful for modeling control flows but not powerful enough to define data and system functionality. High level Petri nets (HLPNs) have been developed to support data and functionality definitions, such as using complex structured data as tokens and algebraic expressions as transition formulas. Compared to low level Petri nets, HLPNs result in compact system models that are easier to be understood. Therefore, HLPNs are more useful in modeling complex systems. There are two issues in using HLPNs - modeling and analysis. Modeling concerns the abstracting and representing the systems under consideration using HLPNs, and analysis deals with effective ways study the behaviors and properties of the resulting HLPN models. In this dissertation, several modeling and analysis techniques for HLPNs are studied, which are integrated into a framework that is supported by a tool. For modeling, this framework integrates two formal languages: a type of HLPNs called Predicate Transition Net (PrT Net) is used to model a system's behavior and a first-order linear time temporal logic (FOLTL) to specify the system's properties. The main contribution of this dissertation with regard to modeling is to develop a software tool to support the formal modeling capabilities in this framework. For analysis, this framework combines three complementary techniques, simulation, explicit state model checking and bounded model checking (BMC). Simulation is a straightforward and speedy method, but only covers some execution paths in a HLPN model. Explicit state model checking covers all the execution paths but suffers from the state explosion problem. BMC is a tradeoff as it provides a certain level of coverage while more efficient than explicit state model checking. The main contribution of this dissertation with regard to analysis is adapting BMC to analyze HLPN models and integrating the three complementary analysis techniques in a software tool to support the formal analysis capabilities in this framework. The SAMTools developed for this framework in this dissertation integrates three tools: PIPE+ for HLPNs behavioral modeling and simulation, SAMAT for hierarchical structural modeling and property specification, and PIPE+Verifier for behavioral verification.
Resumo:
This dissertation examines the sociological process of conflict resolution and consensus building in South Florida Everglades Ecosystem Restoration through what I define as a Network Management Coordinative Interstitial Group (NetMIG). The process of conflict resolution can be summarized as the participation of interested and affected parties (stakeholders) in a forum of negotiation. I study the case of the Governor's Commission for a Sustainable South Florida (GCSSF) that was established to reduce social conflict. Such conflict originated from environmental disputes about the Everglades and was manifested in the form of gridlock among regulatory (government) agencies, Indian tribes, as well as agricultural, environmental conservationist and urban development interests. The purpose of the participatory forum is to reduce conflicts of interest and to achieve consensus, with the ultimate goal of restoration of the original Everglades ecosystem, while cultivating the economic and cultural bases of the communities in the area. Further, the forum aim to formulate consensus through envisioning a common sustainable community by providing means to achieve a balance between human and natural systems. ^ Data were gathered using participant observation and document analysis techniques to conduct a theoretically based analysis of the role of the Network Management Coordinative Interstitial Group (NetMIG). I use conflict resolution theory, environmental conflict theory, stakeholder analysis, systems theory, differentiation and social change theory, and strategic management and planning theory. ^ The purpose of this study is to substantiate the role of the Governor's Commission for a Sustainable South Florida (GCSSF) as a consortium of organizations in an effort to resolve conflict rather than an ethnographic study of this organization. Environmental restoration of the Everglades is a vehicle for recognizing the significance of a Network Management Coordinative Interstitial Group (NetMIG), namely the Governor's Commission for a Sustainable South Florida (GCSSF), as a structural mechanism for stakeholder participation in the process of social conflict resolution through the creation of new cultural paradigms for a sustainable community. ^
Resumo:
Software architecture is the abstract design of a software system. It plays a key role as a bridge between requirements and implementation, and is a blueprint for development. The architecture represents a set of early design decisions that are crucial to a system. Mistakes in those decisions are very costly if they remain undetected until the system is implemented and deployed. This is where formal specification and analysis fits in. Formal specification makes sure that an architecture design is represented in a rigorous and unambiguous way. Furthermore, a formally specified model allows the use of different analysis techniques for verifying the correctness of those crucial design decisions. ^ This dissertation presented a framework, called SAM, for formal specification and analysis of software architectures. In terms of specification, formalisms and mechanisms were identified and chosen to specify software architecture based on different analysis needs. Formalisms for specifying properties were also explored, especially in the case of non-functional properties. In terms of analysis, the dissertation explored both the verification of functional properties and the evaluation of non-functional properties of software architecture. For the verification of functional property, methodologies were presented on how to apply existing model checking techniques on a SAM model. For the evaluation of non-functional properties, the dissertation first showed how to incorporate stochastic information into a SAM model, and then explained how to translate the model to existing tools and conducts the analysis using those tools. ^ To alleviate the analysis work, we also provided a tool to automatically translate a SAM model for model checking. All the techniques and methods described in the dissertation were illustrated by examples or case studies, which also served a purpose of advocating the use of formal methods in practice. ^
Resumo:
The nation's freeway systems are becoming increasingly congested. A major contribution to traffic congestion on freeways is due to traffic incidents. Traffic incidents are non-recurring events such as accidents or stranded vehicles that cause a temporary roadway capacity reduction, and they can account for as much as 60 percent of all traffic congestion on freeways. One major freeway incident management strategy involves diverting traffic to avoid incident locations by relaying timely information through Intelligent Transportation Systems (ITS) devices such as dynamic message signs or real-time traveler information systems. The decision to divert traffic depends foremost on the expected duration of an incident, which is difficult to predict. In addition, the duration of an incident is affected by many contributing factors. Determining and understanding these factors can help the process of identifying and developing better strategies to reduce incident durations and alleviate traffic congestion. A number of research studies have attempted to develop models to predict incident durations, yet with limited success. ^ This dissertation research attempts to improve on this previous effort by applying data mining techniques to a comprehensive incident database maintained by the District 4 ITS Office of the Florida Department of Transportation (FDOT). Two categories of incident duration prediction models were developed: "offline" models designed for use in the performance evaluation of incident management programs, and "online" models for real-time prediction of incident duration to aid in the decision making of traffic diversion in the event of an ongoing incident. Multiple data mining analysis techniques were applied and evaluated in the research. The multiple linear regression analysis and decision tree based method were applied to develop the offline models, and the rule-based method and a tree algorithm called M5P were used to develop the online models. ^ The results show that the models in general can achieve high prediction accuracy within acceptable time intervals of the actual durations. The research also identifies some new contributing factors that have not been examined in past studies. As part of the research effort, software code was developed to implement the models in the existing software system of District 4 FDOT for actual applications. ^
Resumo:
The necessity of elemental analysis techniques to solve forensic problems continues to expand as the samples collected from crime scenes grow in complexity. Laser ablation ICP-MS (LA-ICP-MS) has been shown to provide a high degree of discrimination between samples that originate from different sources. In the first part of this research, two laser ablation ICP-MS systems were compared, one using a nanosecond laser and another a femtosecond laser source for the forensic analysis of glass. The results showed that femtosecond LA-ICP-MS did not provide significant improvements in terms of accuracy, precision and discrimination, however femtosecond LA-ICP-MS did provide lower detection limits. In addition, it was determined that even for femtosecond LA-ICP-MS an internal standard should be utilized to obtain accurate analytical results for glass analyses. In the second part, a method using laser induced breakdown spectroscopy (LIBS) for the forensic analysis of glass was shown to provide excellent discrimination for a glass set consisting of 41 automotive fragments. The discrimination power was compared to two of the leading elemental analysis techniques, μXRF and LA-ICP-MS, and the results were similar; all methods generated >99% discrimination and the pairs found indistinguishable were similar. An extensive data analysis approach for LIBS glass analyses was developed to minimize Type I and II errors en route to a recommendation of 10 ratios to be used for glass comparisons. Finally, a LA-ICP-MS method for the qualitative analysis and discrimination of gel ink sources was developed and tested for a set of ink samples. In the first discrimination study, qualitative analysis was used to obtain 95.6% discrimination for a blind study consisting of 45 black gel ink samples provided by the United States Secret Service. A 0.4% false exclusion (Type I) error rate and a 3.9% false inclusion (Type II) error rate was obtained for this discrimination study. In the second discrimination study, 99% discrimination power was achieved for a black gel ink pen set consisting of 24 self collected samples. The two pairs found to be indistinguishable came from the same source of origin (the same manufacturer and type of pen purchased in different locations). It was also found that gel ink from the same pen, regardless of the age, was indistinguishable as were gel ink pens (four pens) originating from the same pack.
Resumo:
The elemental analysis of soil is useful in forensic and environmental sciences. Methods were developed and optimized for two laser-based multi-element analysis techniques: laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and laser-induced breakdown spectroscopy (LIBS). This work represents the first use of a 266 nm laser for forensic soil analysis by LIBS. Sample preparation methods were developed and optimized for a variety of sample types, including pellets for large bulk soil specimens (470 mg) and sediment-laden filters (47 mg), and tape-mounting for small transfer evidence specimens (10 mg). Analytical performance for sediment filter pellets and tape-mounted soils was similar to that achieved with bulk pellets. An inter-laboratory comparison exercise was designed to evaluate the performance of the LA-ICP-MS and LIBS methods, as well as for micro X-ray fluorescence (μXRF), across multiple laboratories. Limits of detection (LODs) were 0.01-23 ppm for LA-ICP-MS, 0.25-574 ppm for LIBS, 16-4400 ppm for μXRF, and well below the levels normally seen in soils. Good intra-laboratory precision (≤ 6 % relative standard deviation (RSD) for LA-ICP-MS; ≤ 8 % for μXRF; ≤ 17 % for LIBS) and inter-laboratory precision (≤ 19 % for LA-ICP-MS; ≤ 25 % for μXRF) were achieved for most elements, which is encouraging for a first inter-laboratory exercise. While LIBS generally has higher LODs and RSDs than LA-ICP-MS, both were capable of generating good quality multi-element data sufficient for discrimination purposes. Multivariate methods using principal components analysis (PCA) and linear discriminant analysis (LDA) were developed for discriminations of soils from different sources. Specimens from different sites that were indistinguishable by color alone were discriminated by elemental analysis. Correct classification rates of 94.5 % or better were achieved in a simulated forensic discrimination of three similar sites for both LIBS and LA-ICP-MS. Results for tape-mounted specimens were nearly identical to those achieved with pellets. Methods were tested on soils from USA, Canada and Tanzania. Within-site heterogeneity was site-specific. Elemental differences were greatest for specimens separated by large distances, even within the same lithology. Elemental profiles can be used to discriminate soils from different locations and narrow down locations even when mineralogy is similar.
Resumo:
The necessity of elemental analysis techniques to solve forensic problems continues to expand as the samples collected from crime scenes grow in complexity. Laser ablation ICP-MS (LA-ICP-MS) has been shown to provide a high degree of discrimination between samples that originate from different sources. In the first part of this research, two laser ablation ICP-MS systems were compared, one using a nanosecond laser and another a femtosecond laser source for the forensic analysis of glass. The results showed that femtosecond LA-ICP-MS did not provide significant improvements in terms of accuracy, precision and discrimination, however femtosecond LA-ICP-MS did provide lower detection limits. In addition, it was determined that even for femtosecond LA-ICP-MS an internal standard should be utilized to obtain accurate analytical results for glass analyses. In the second part, a method using laser induced breakdown spectroscopy (LIBS) for the forensic analysis of glass was shown to provide excellent discrimination for a glass set consisting of 41 automotive fragments. The discrimination power was compared to two of the leading elemental analysis techniques, µXRF and LA-ICP-MS, and the results were similar; all methods generated >99% discrimination and the pairs found indistinguishable were similar. An extensive data analysis approach for LIBS glass analyses was developed to minimize Type I and II errors en route to a recommendation of 10 ratios to be used for glass comparisons. Finally, a LA-ICP-MS method for the qualitative analysis and discrimination of gel ink sources was developed and tested for a set of ink samples. In the first discrimination study, qualitative analysis was used to obtain 95.6% discrimination for a blind study consisting of 45 black gel ink samples provided by the United States Secret Service. A 0.4% false exclusion (Type I) error rate and a 3.9% false inclusion (Type II) error rate was obtained for this discrimination study. In the second discrimination study, 99% discrimination power was achieved for a black gel ink pen set consisting of 24 self collected samples. The two pairs found to be indistinguishable came from the same source of origin (the same manufacturer and type of pen purchased in different locations). It was also found that gel ink from the same pen, regardless of the age, was indistinguishable as were gel ink pens (four pens) originating from the same pack.
Resumo:
The elemental analysis of soil is useful in forensic and environmental sciences. Methods were developed and optimized for two laser-based multi-element analysis techniques: laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and laser-induced breakdown spectroscopy (LIBS). This work represents the first use of a 266 nm laser for forensic soil analysis by LIBS. Sample preparation methods were developed and optimized for a variety of sample types, including pellets for large bulk soil specimens (470 mg) and sediment-laden filters (47 mg), and tape-mounting for small transfer evidence specimens (10 mg). Analytical performance for sediment filter pellets and tape-mounted soils was similar to that achieved with bulk pellets. An inter-laboratory comparison exercise was designed to evaluate the performance of the LA-ICP-MS and LIBS methods, as well as for micro X-ray fluorescence (μXRF), across multiple laboratories. Limits of detection (LODs) were 0.01-23 ppm for LA-ICP-MS, 0.25-574 ppm for LIBS, 16-4400 ppm for µXRF, and well below the levels normally seen in soils. Good intra-laboratory precision (≤ 6 % relative standard deviation (RSD) for LA-ICP-MS; ≤ 8 % for µXRF; ≤ 17 % for LIBS) and inter-laboratory precision (≤ 19 % for LA-ICP-MS; ≤ 25 % for µXRF) were achieved for most elements, which is encouraging for a first inter-laboratory exercise. While LIBS generally has higher LODs and RSDs than LA-ICP-MS, both were capable of generating good quality multi-element data sufficient for discrimination purposes. Multivariate methods using principal components analysis (PCA) and linear discriminant analysis (LDA) were developed for discriminations of soils from different sources. Specimens from different sites that were indistinguishable by color alone were discriminated by elemental analysis. Correct classification rates of 94.5 % or better were achieved in a simulated forensic discrimination of three similar sites for both LIBS and LA-ICP-MS. Results for tape-mounted specimens were nearly identical to those achieved with pellets. Methods were tested on soils from USA, Canada and Tanzania. Within-site heterogeneity was site-specific. Elemental differences were greatest for specimens separated by large distances, even within the same lithology. Elemental profiles can be used to discriminate soils from different locations and narrow down locations even when mineralogy is similar.
Resumo:
Modern software systems are often large and complicated. To better understand, develop, and manage large software systems, researchers have studied software architectures that provide the top level overall structural design of software systems for the last decade. One major research focus on software architectures is formal architecture description languages, but most existing research focuses primarily on the descriptive capability and puts less emphasis on software architecture design methods and formal analysis techniques, which are necessary to develop correct software architecture design. ^ Refinement is a general approach of adding details to a software design. A formal refinement method can further ensure certain design properties. This dissertation proposes refinement methods, including a set of formal refinement patterns and complementary verification techniques, for software architecture design using Software Architecture Model (SAM), which was developed at Florida International University. First, a general guideline for software architecture design in SAM is proposed. Second, specification construction through property-preserving refinement patterns is discussed. The refinement patterns are categorized into connector refinement, component refinement and high-level Petri nets refinement. These three levels of refinement patterns are applicable to overall system interaction, architectural components, and underlying formal language, respectively. Third, verification after modeling as a complementary technique to specification refinement is discussed. Two formal verification tools, the Stanford Temporal Prover (STeP) and the Simple Promela Interpreter (SPIN), are adopted into SAM to develop the initial models. Fourth, formalization and refinement of security issues are studied. A method for security enforcement in SAM is proposed. The Role-Based Access Control model is formalized using predicate transition nets and Z notation. The patterns of enforcing access control and auditing are proposed. Finally, modeling and refining a life insurance system is used to demonstrate how to apply the refinement patterns for software architecture design using SAM and how to integrate the access control model. ^ The results of this dissertation demonstrate that a refinement method is an effective way to develop a high assurance system. The method developed in this dissertation extends existing work on modeling software architectures using SAM and makes SAM a more usable and valuable formal tool for software architecture design. ^
Resumo:
This work is the first work using patterned soft underlayers in multilevel three-dimensional vertical magnetic data storage systems. The motivation stems from an exponentially growing information stockpile, and a corresponding need for more efficient storage devices with higher density. The world information stockpile currently exceeds 150EB (ExaByte=1x1018Bytes); most of which is in analog form. Among the storage technologies (semiconductor, optical and magnetic), magnetic hard disk drives are posed to occupy a big role in personal, network as well as corporate storage. However; this mode suffers from a limit known as the Superparamagnetic limit; which limits achievable areal density due to fundamental quantum mechanical stability requirements. There are many viable techniques considered to defer superparamagnetism into the 100's of Gbit/in2 such as: patterned media, Heat-Assisted Magnetic Recording (HAMR), Self Organized Magnetic Arrays (SOMA), antiferromagnetically coupled structures (AFC), and perpendicular magnetic recording. Nonetheless, these techniques utilize a single magnetic layer; and can thusly be viewed as two-dimensional in nature. In this work a novel three-dimensional vertical magnetic recording approach is proposed. This approach utilizes the entire thickness of a magnetic multilayer structure to store information; with potential areal density well into the Tbit/in2 regime. ^ There are several possible implementations for 3D magnetic recording; each presenting its own set of requirements, merits and challenges. The issues and considerations pertaining to the development of such systems will be examined, and analyzed using empirical and numerical analysis techniques. Two novel key approaches are proposed and developed: (1) Patterned soft underlayer (SUL) which allows for enhanced recording of thicker media, (2) A combinatorial approach for 3D media development that facilitates concurrent investigation of various film parameters on a predefined performance metric. A case study is presented using combinatorial overcoats of Tantalum and Zirconium Oxides for corrosion protection in magnetic media. ^ Feasibility of 3D recording is demonstrated, and an emphasis on 3D media development is emphasized as a key prerequisite. Patterned SUL shows significant enhancement over conventional "un-patterned" SUL, and shows that geometry can be used as a design tool to achieve favorable field distribution where magnetic storage and magnetic phenomena are involved. ^
A framework for transforming, analyzing, and realizing software designs in unified modeling language
Resumo:
Unified Modeling Language (UML) is the most comprehensive and widely accepted object-oriented modeling language due to its multi-paradigm modeling capabilities and easy to use graphical notations, with strong international organizational support and industrial production quality tool support. However, there is a lack of precise definition of the semantics of individual UML notations as well as the relationships among multiple UML models, which often introduces incomplete and inconsistent problems for software designs in UML, especially for complex systems. Furthermore, there is a lack of methodologies to ensure a correct implementation from a given UML design. The purpose of this investigation is to verify and validate software designs in UML, and to provide dependability assurance for the realization of a UML design.^ In my research, an approach is proposed to transform UML diagrams into a semantic domain, which is a formal component-based framework. The framework I proposed consists of components and interactions through message passing, which are modeled by two-layer algebraic high-level nets and transformation rules respectively. In the transformation approach, class diagrams, state machine diagrams and activity diagrams are transformed into component models, and transformation rules are extracted from interaction diagrams. By applying transformation rules to component models, a (sub)system model of one or more scenarios can be constructed. Various techniques such as model checking, Petri net analysis techniques can be adopted to check if UML designs are complete or consistent. A new component called property parser was developed and merged into the tool SAM Parser, which realize (sub)system models automatically. The property parser generates and weaves runtime monitoring code into system implementations automatically for dependability assurance. The framework in the investigation is creative and flexible since it not only can be explored to verify and validate UML designs, but also provides an approach to build models for various scenarios. As a result of my research, several kinds of previous ignored behavioral inconsistencies can be detected.^
Resumo:
Accurately assessing the extent of myocardial tissue injury induced by Myocardial infarction (MI) is critical to the planning and optimization of MI patient management. With this in mind, this study investigated the feasibility of using combined fluorescence and diffuse reflectance spectroscopy to characterize a myocardial infarct at the different stages of its development. An animal study was conducted using twenty male Sprague-Dawley rats with MI. In vivo fluorescence spectra at 337 nm excitation and diffuse reflectance between 400 nm and 900 nm were measured from the heart using a portable fiber-optic spectroscopic system. Spectral acquisition was performed on (1) the normal heart region; (2) the region immediately surrounding the infarct; and (3) the infarcted region—one, two, three and four weeks into MI development. The spectral data were divided into six subgroups according to the histopathological features associated with various degrees/severities of myocardial tissue injury as well as various stages of myocardial tissue remodeling, post infarction. Various data processing and analysis techniques were employed to recognize the representative spectral features corresponding to various histopathological features associated with myocardial infarction. The identified spectral features were utilized in discriminant analysis to further evaluate their effectiveness in classifying tissue injuries induced by MI. In this study, it was observed that MI induced significant alterations (p < 0.05) in the diffuse reflectance spectra, especially between 450 nm and 600 nm, from myocardial tissue within the infarcted and surrounding regions. In addition, MI induced a significant elevation in fluorescence intensities at 400 and 460 nm from the myocardial tissue from the same regions. The extent of these spectral alterations was related to the duration of the infarction. Using the spectral features identified, an effective tissue injury classification algorithm was developed which produced a satisfactory overall classification result (87.8%). The findings of this research support the concept that optical spectroscopy represents a useful tool to non-invasively determine the in vivo pathophysiological features of a myocardial infarct and its surrounding tissue, thereby providing valuable real-time feedback to surgeons during various surgical interventions for MI.
Resumo:
The purpose of this research is design considerations for environmental monitoring platforms for the detection of hazardous materials using System-on-a-Chip (SoC) design. Design considerations focus on improving key areas such as: (1) sampling methodology; (2) context awareness; and (3) sensor placement. These design considerations for environmental monitoring platforms using wireless sensor networks (WSN) is applied to the detection of methylmercury (MeHg) and environmental parameters affecting its formation (methylation) and deformation (demethylation). ^ The sampling methodology investigates a proof-of-concept for the monitoring of MeHg using three primary components: (1) chemical derivatization; (2) preconcentration using the purge-and-trap (P&T) method; and (3) sensing using Quartz Crystal Microbalance (QCM) sensors. This study focuses on the measurement of inorganic mercury (Hg) (e.g., Hg2+) and applies lessons learned to organic Hg (e.g., MeHg) detection. ^ Context awareness of a WSN and sampling strategies is enhanced by using spatial analysis techniques, namely geostatistical analysis (i.e., classical variography and ordinary point kriging), to help predict the phenomena of interest in unmonitored locations (i.e., locations without sensors). This aids in making more informed decisions on control of the WSN (e.g., communications strategy, power management, resource allocation, sampling rate and strategy, etc.). This methodology improves the precision of controllability by adding potentially significant information of unmonitored locations.^ There are two types of sensors that are investigated in this study for near-optimal placement in a WSN: (1) environmental (e.g., humidity, moisture, temperature, etc.) and (2) visual (e.g., camera) sensors. The near-optimal placement of environmental sensors is found utilizing a strategy which minimizes the variance of spatial analysis based on randomly chosen points representing the sensor locations. Spatial analysis is employed using geostatistical analysis and optimization occurs with Monte Carlo analysis. Visual sensor placement is accomplished for omnidirectional cameras operating in a WSN using an optimal placement metric (OPM) which is calculated for each grid point based on line-of-site (LOS) in a defined number of directions where known obstacles are taken into consideration. Optimal areas of camera placement are determined based on areas generating the largest OPMs. Statistical analysis is examined by using Monte Carlo analysis with varying number of obstacles and cameras in a defined space. ^