8 resultados para Elasticity and anelasticity

em Digital Commons at Florida International University


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The purpose of this paper is to compare prices for a popular quick-service restaurant chain (i.e. McDonalds’) across countries throughout the world using the “Big Mac Index” published by “The Economist.” The index was originally developed to measure the valuation of international currencies against the U.S. dollar. The analysis in this study examines the relationship between the price of a Big Mac and other variables such as the cost of beef, price elasticity, and income. Finally, these relationships are reviewed to draw inferences concerning the use of demand, costs, and competition in setting prices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aorta has been viewed as a passive distribution manifold for blood whose elasticity allows it to store blood during cardiac ejection (systole), and release it during relaxation (diastole). This capacitance, or compliance, lowers peak cardiac work input and maintains peripheral sanguine irrigation throughout the cardiac cycle. The compliance of the human and canine circulatory systems have been described either as constant throughout the cycle (Toy et al. 1985) or as some inverse function of pressure (Li et al. 1990, Cappelo et al. 1995). This work shows that a compliance value that is higher during systole than diastole (equivalent to a direct function of pressure) leads to a reduction in the energetic input to the cardiovascular system (CV), even when accounting for the energy required to change compliance. This conclusion is obtained numerically, based on a 3-element lumped-parameter model of the CV, then demonstrated in a physical model built for the purpose. It is then shown, based on the numerical and physical models, on analytical considerations of elastic tubes, and on the analysis of arterial volume as a function of pressure measured in vivo (Armentano et al. 1995), that the mechanical effects of a presupposed arterial contraction are consistent with those of energetically beneficial changes in compliance during the cardiac cycle. Although the amount of energy potentially saved with rhythmically contracting arteries is small (mean 0.55% for the cases studied) the importance of the phenomenon lies in its possible relation to another function of the arterial smooth muscle (ASM): synthesis of wall matrix macromolecules. It is speculated that a reduction in the rate of collagen synthesis by the ASM is implicated in the formation of arteriosclerosis. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bark extracts of the African cherry (Prunus africana) are used to treat benign prostatic hyperplasia. This study examined the effects of commercial bark harvest on population dynamics in the Kilum-Ijim Forest Preserve on Mount Oku, Cameroon and on traditional uses. P. africana is valued for its timber and as fuel although its greatest value is as a traditional medicine for human and animal ailments. Harvest has depleted the resource and has eroded traditional forest protection practices. I constructed matrix models to examine the effects of bark harvest on population structure and on population dynamics in harvested and unharvested populations. Harvesting simulations examined the effect on the population growth rate (λ) with differing levels of mortality of harvest-sized and large trees and differing harvest frequencies. Size class frequencies for the entire forest decreased in a reverse j-shaped curve, indicating adequate recruitment in the absence of harvest. Individual plots showed differences from the overall forest data, suggesting effects of natural and man-made perturbations, particularly due to bark harvest. One plot (harvested in the 1980s) showed a temporal difference in λ and fluctuated around one, due to alternating high and low fruiting years; other unharvested plots showed smaller temporal differences. Harvested plots (harvested illegally in 1997) had values of λ less than one and showed small temporal differences. The control plot also showed λ less than one, due to poor recruitment in the closed canopy forest. The value of λ for the combined data was 0.9931 suggesting a slightly declining population. The elasticity matrix for the combined data indicated the population growth rate was most sensitive to the survival of the large reproductive trees (42.5% of the elasticity). In perturbation analyses, reducing the survival of the large trees caused the largest reductions in λ. Simulations involving harvesting frequency indicated λ returns to pre-harvest conditions if trees are re-harvested after 10–15 years, but only if the large trees are left unharvested. Management scenarios suggest harvest can be sustainable if seedlings and small saplings are planted in the forest and actively managed, although large-scale plantations may be the only feasible option to meet market demand. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The application of advanced materials in infrastructure has grown rapidly in recent years mainly because of their potential to ease the construction, extend the service life, and improve the performance of structures. Ultra-high performance concrete (UHPC) is one such material considered as a novel alternative to conventional concrete. The material microstructure in UHPC is optimized to significantly improve its material properties including compressive and tensile strength, modulus of elasticity, durability, and damage tolerance. Fiber-reinforced polymer (FRP) composite is another novel construction material with excellent properties such as high strength-to-weight and stiffness-to-weight ratios and good corrosion resistance. Considering the exceptional properties of UHPC and FRP, many advantages can result from the combined application of these two advanced materials, which is the subject of this research. The confinement behavior of UHPC was studied for the first time in this research. The stress-strain behavior of a series of UHPC-filled fiber-reinforced polymer (FRP) tubes with different fiber types and thicknesses were tested under uniaxial compression. The FRP confinement was shown to significantly enhance both the ultimate strength and strain of UHPC. It was also shown that existing confinement models are incapable of predicting the behavior of FRP-confined UHPC. Therefore, new stress-strain models for FRP-confined UHPC were developed through an analytical study. In the other part of this research, a novel steel-free UHPC-filled FRP tube (UHPCFFT) column system was developed and its cyclic behavior was studied. The proposed steel-free UHPCFFT column showed much higher strength and stiffness, with a reasonable ductility, as compared to its conventional reinforced concrete (RC) counterpart. Using the results of the first phase of column tests, a second series of UHPCFFT columns were made and studied under pseudo-static loading to study the effect of column parameters on the cyclic behavior of UHPCFFT columns. Strong correlations were noted between the initial stiffness and the stiffness index, and between the moment capacity and the reinforcement index. Finally, a thorough analytical study was carried out to investigate the seismic response of the proposed steel-free UHPCFFT columns, which showed their superior earthquake resistance, as compared to their RC counterparts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hypertension, a major risk factor in the cardiovascular system, is characterized by an increase in the arterial blood pressure. High dietary sodium is linked to multiple cardiovascular disorders including hypertension. Salt sensitivity, a measure of how the blood pressure responds to salt intake is observed in more than 50% of the hypertension cases. Nitric Oxide (NO), as an endogenous vasodilator serves many important biological roles in the cardiovascular physiology including blood pressure regulation. The physiological concentrations for NO bioactivity are reported to be in 0-500 nM range. Notably, the vascular response to NO is highly regulated within a small concentration spectrum. Hence, much uncertainty surrounds how NO modulates diverse signaling mechanisms to initiate vascular relaxation and alleviate hypertension. Regulating the availability of NO in the vasculature has demonstrated vasoprotective effects. In addition, modulating the NO release by different means has proved to restore endothelial function. In this study we addressed parameters that regulated NO release in the vasculature, in physiology and pathophysiology such as salt sensitive hypertension. We showed that, in the rat mesenteric arterioles, Ca2+ induced rapid relaxation (time constants 20.8 ± 2.2 sec) followed with a much slower constriction after subsequent removal of the stimulus (time constants 104.8 ± 10.0 sec). An interesting observation was that a fourfold increase in the Ca 2+ frequency improved the efficacy of arteriolar relaxation by 61.1%. Our results suggested that, Ca2+ frequency-dependent transient release of NO from the endothelium carried encoded information; which could be translated into different steady state vascular tone. Further, Agmatine, a metabolite of L-arginine, as a ligand, was observed to relax the mesenteric arterioles. These relaxations were NO-dependent and occurred via &agr;-2 receptor activity. The observed potency of agmatine (EC50, 138.7 ± 12.1 ± μM; n=22), was 40 fold higher than L-arginine itself (EC50, 18.3 ± 1.3 mM; n = 5). This suggested us to propose alternative parallel mechanism for L-arginine mediated vascular relaxation via arginine decarboxylase activity. In addition, the biomechanics of rat mesentery is important in regulation of vascular tone. We developed 2D finite element models that described the vascular mechanics of rat mesentery. With an inverse estimation approach, we identified the elasticity parameters characterizing alterations in normotensive and hypertensive Dahl rats. Our efforts were towards guiding current studies that optimized cardiovascular intervention and assisted in the development of new therapeutic strategies. These observations may have significant implications towards alternatives to present methods for NO delivery as a therapeutic target. Our work shall prove to be beneficial in assisting the delivery of NO in the vasculature thus minimizing the cardiovascular risk in handling abnormalities, such as hypertension.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This research first evaluated the effects of urban wildland interface on reproductive biology of the Big Pine Partridge Pea, Chamaecrista keyensis, an understory herb that is endemic to Big Pine Key, Florida. I found that C. keyensis was self-compatible, but depended on bees for seed set. Furthermore, individuals of C. keyensis in urban habitats suffered higher seed predation and therefore set fewer seeds than forest interior plants. ^ I then focused on the effects of fire at different times of the year, summer (wet) and winter (dry), on the population dynamics and population viability of C. keyensis. I found that C. keyensis population recovered faster after winter burns and early summer burns (May–June) than after late summer burns (July–September) due to better survival and seedling recruitment following former fires. Fire intensity had positive effects on reproduction of C. keyensis. In contrast, no significant fire intensity effects were found on survival, growth, and seedling recruitment. This indicated that better survival and seedling recruitment following winter and early summer burns (compared with late summer burns) were due to the reproductive phenology of the plant in relation to fires rather than differences in fire intensity. Deterministic population modeling showed that time since fire significantly affected the finite population growth rates (λ). Particularly, recently burned plots had the largest λ. In addition, effects of timing of fires on λ were most pronounced the year of burn, but not the subsequent years. The elasticity analyses suggested that maximizing survival is an effective way to minimize the reduction in finite population growth rate the year of burn. Early summer fires or dry-season fires may achieve this objective. Finally, stochastic simulations indicated that the C. keyensis population had lower extinction risk and population decline probability if burned in the winter than in the late summer. A fire frequency of approximately 7 years would create the lowest extinction probability for C. keyensis. A fire management regime including a wide range of burning seasons may be essential for the continued existence of C. keyensis and other endemic species of pine rockland on Big Pine Key. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study examined the relationships among ethnicity/race, lifestyle factors, phylloquinone (vitamin K₁) intake, and arterial pulse pressure in a nationally representative sample of older adults from four ethnic/racial groups: non-Hispanic Whites, non-Hispanic Blacks, Mexican Americans, and other Hispanics. This was a cross-sectional study of U.S. representative sample with data from the National Health and Nutrition Examination Surveys, 2007-2008 and 2009-2010 of adults aged 50 years and older (N = 5296). Vitamin K intake was determined by 24-hour recall. Pulse pressure was calculated as the difference between the averages of systolic blood pressure and diastolic blood pressure. Compared to White non-Hispanics, the other ethnic/racial groups were more likely to have inadequate vitamin K₁ intake. Inadequate vitamin K₁ intake was an independent predictor of high arterial pulse pressure. This was the first study that compared vitamin K₁ inadequacy with arterial pulse pressure across ethnicities/races in U.S. older adults. These findings suggest that vitamin K screening may be a beneficial marker for the health of older adults.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hypertension, a major risk factor in the cardiovascular system, is characterized by an increase in the arterial blood pressure. High dietary sodium is linked to multiple cardiovascular disorders including hypertension. Salt sensitivity, a measure of how the blood pressure responds to salt intake is observed in more than 50% of the hypertension cases. Nitric Oxide (NO), as an endogenous vasodilator serves many important biological roles in the cardiovascular physiology including blood pressure regulation. The physiological concentrations for NO bioactivity are reported to be in 0-500 nM range. Notably, the vascular response to NO is highly regulated within a small concentration spectrum. Hence, much uncertainty surrounds how NO modulates diverse signaling mechanisms to initiate vascular relaxation and alleviate hypertension. Regulating the availability of NO in the vasculature has demonstrated vasoprotective effects. In addition, modulating the NO release by different means has proved to restore endothelial function. In this study we addressed parameters that regulated NO release in the vasculature, in physiology and pathophysiology such as salt sensitive hypertension. We showed that, in the rat mesenteric arterioles, Ca2+ induced rapid relaxation (time constants 20.8 ± 2.2 sec) followed with a much slower constriction after subsequent removal of the stimulus (time constants 104.8 ± 10.0 sec). An interesting observation was that a fourfold increase in the Ca2+ frequency improved the efficacy of arteriolar relaxation by 61.1%. Our results suggested that, Ca2+ frequency-dependent transient release of NO from the endothelium carried encoded information; which could be translated into different steady state vascular tone. Further, Agmatine, a metabolite of L-arginine, as a ligand, was observed to relax the mesenteric arterioles. These relaxations were NO-dependent and occurred via α-2 receptor activity. The observed potency of agmatine (EC50, 138.7 ± 12.1 µM; n=22), was 40 fold higher than L-arginine itself (EC50, 18.3 ± 1.3 mM; n = 5). This suggested us to propose alternative parallel mechanism for L-arginine mediated vascular relaxation via arginine decarboxylase activity. In addition, the biomechanics of rat mesentery is important in regulation of vascular tone. We developed 2D finite element models that described the vascular mechanics of rat mesentery. With an inverse estimation approach, we identified the elasticity parameters characterizing alterations in normotensive and hypertensive Dahl rats. Our efforts were towards guiding current studies that optimized cardiovascular intervention and assisted in the development of new therapeutic strategies. These observations may have significant implications towards alternatives to present methods for NO delivery as a therapeutic target. Our work shall prove to be beneficial in assisting the delivery of NO in the vasculature thus minimizing the cardiovascular risk in handling abnormalities, such as hypertension.