6 resultados para Effect of pressure

em Digital Commons at Florida International University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Earth's upper mantle, mainly composed of olivine, is seismically anisotropic. Seismic anisotropy attenuation has been observed at 220km depth. Karato et al. (1992) attributed this attenuation to a transition between two deformation mechanisms, from dislocation creep above 220km to diffusion creep below 220km, induced by a change in water content. Couvy (2005) and Mainprice et al. (2005) predicted a change in Lattice Preferred Orientation induced by pressure, which comes from a change of slip system, from [100] slip to [001] slip, and is responsible for the seismic anisotropy attenuation. Raterron et al. (2007) ran single crystal deformation experiments under anhydrous conditions and observed that the slip system transition occurs around 8GPa, which corresponds to a depth of 260Km. Experiments were done to quantify the effects of water on olivine single crystals deformed using D-DIA press and synchrotron beam. Deformations were carried out in uniaxial compression along [110]c, [011]c, and [101]c, crystallographic directions, at pressure ranging from 4 to 8GPa and temperature between 1373 and 1473K. Talc sleeves about the annulus of the single crystals were used as source of water in the assembly. Stress and specimen strain rates were calculated by in-situ X-ray diffraction and time resolved imaging, respectively. By direct comparison of single crystals strain rates, we observed that [110]c deforms faster than [011]c below 5GPa. However above 6GPa [011]c deforms faster than [110]c. This revealed that [100](010) is the dominant slip system below 5GPa, and above 6GPa [001](010) becomes dominant. According to our results, the slip system transition, which is induced by pressure, occurs at 6GPa. Water influences the pressure where the switch over occurs, by lowering the transition pressure. The pressure effect on the slip systems activity has been quantified and the hydrolytic weakening has also been estimated for both orientations. Data also shows that temperature affects the slip system activity. The regional variation of the depth for the seismic anisotropy attenuation, which would depend on local hydroxyl content and temperature variations and explains the seismic anisotropy attenuation occurring at about 220Km depth in the mantle, where the pressure is about 6GPa. Deformation of MgO single crystal oriented [100], [110] and [111] were also performed. The results predict a change in the slip system activity at 23GPa, again induced by pressure. This explains the seismic anisotropy observed in the lower mantle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Arterial pulse pressure, the difference between systolic and diastolic blood pressure, has been used as an indicator (surrogate measure) of arterial stiffness. High arterial pulse pressure (> 40) has been associated with increased cardiovascular disease and mortality. Several clinical trials have reported that the proportion of calories from carbohydrate has an effect on blood pressure. The primary objective of this study was to assess arterial pulse pressure and its association with carbohydrate quantity and quality (glycemic load) with diabetes status for a Cuban American population. Methods: A single point analysis included 367 participants. There was complete data for 365 (190 with and 175 without type 2 diabetes). The study was conducted in the investigator’s laboratory located in Miami, Florida. Demographic, dietary, anthropometric and laboratory data were collected. Arterial pulse pressure was calculated by the formula systolic minus the diastolic blood pressure. Glycemic load, fructose, sucrose, percent of average daily calories from carbohydrate, fat and protein, grams of fiber and micronutrient intakes were calculated from a validated food frequency questionnaire. Results: The mean arterial pulse pressure was significantly higher in participants with (52.9 ± 12.4) than without (48.6 ± 13.4) type 2 diabetes. The odds of persons with diabetes having high arterial pulse pressure (>40) was 1.85 (95% CI =1.09, 3.13); p=0.023. For persons with type 2 diabetes higher glycemic load was associated with lower arterial pulse pressure. Conclusions: Arterial pulse pressure and diet are modifiable risk factors of cardiovascular disease. Arterial pulse pressure may be associated with carbohydrate intake differently considering diabetes status. Results may be due to individuals with diabetes following dietary recommendations. The findings of this study suggest clinicians take into consideration how medical condition, ethnicity and diet are associated with arterial pulse pressure before developing a medical nutrition therapy plan in collaboration with the client.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this research was to study the effect of the Florida A+ Plan accountability program on curriculum and instruction in four Title I public elementary schools in the Miami-Dade County Public Schools system. It focused on the experiences of the school principals and the classroom teachers of the four schools as they related to curriculum and instruction. The study included an analysis of the school improvement plans in curriculum and instruction for each school during the school years 1998-2004. ^ The study was conducted in the format of interviews with the school principals and principal selected classroom teachers who taught third, fourth, or fifth grade during the first six years of the Florida A+ Plan. The analysis of the school improvement plans focused on the implementation of curriculum and instruction for each of the four schools. It focused on the goals and measurable objectives selected by each school to improve its instructional program in the academic subjects of reading, mathematics, writing, and science. ^ The findings indicated that under the pressure to improve their school grade on the Florida A+ Plan, each of the target schools, based on individual needs assessments, and restructured their instructional program each school year as documented in their school improvement plans. They altered their programs by analyzing student performance data to realign curriculum and instruction. The analysis of the interviews with the principals and the teachers showed that each school year they restructured their program to align it with the FCAT content. This realigning was a collaborative effort on the part of the administration and the instructional staff. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hypertension, a major risk factor in the cardiovascular system, is characterized by an increase in the arterial blood pressure. High dietary sodium is linked to multiple cardiovascular disorders including hypertension. Salt sensitivity, a measure of how the blood pressure responds to salt intake is observed in more than 50% of the hypertension cases. Nitric Oxide (NO), as an endogenous vasodilator serves many important biological roles in the cardiovascular physiology including blood pressure regulation. The physiological concentrations for NO bioactivity are reported to be in 0-500 nM range. Notably, the vascular response to NO is highly regulated within a small concentration spectrum. Hence, much uncertainty surrounds how NO modulates diverse signaling mechanisms to initiate vascular relaxation and alleviate hypertension. Regulating the availability of NO in the vasculature has demonstrated vasoprotective effects. In addition, modulating the NO release by different means has proved to restore endothelial function. In this study we addressed parameters that regulated NO release in the vasculature, in physiology and pathophysiology such as salt sensitive hypertension. We showed that, in the rat mesenteric arterioles, Ca2+ induced rapid relaxation (time constants 20.8 ± 2.2 sec) followed with a much slower constriction after subsequent removal of the stimulus (time constants 104.8 ± 10.0 sec). An interesting observation was that a fourfold increase in the Ca 2+ frequency improved the efficacy of arteriolar relaxation by 61.1%. Our results suggested that, Ca2+ frequency-dependent transient release of NO from the endothelium carried encoded information; which could be translated into different steady state vascular tone. Further, Agmatine, a metabolite of L-arginine, as a ligand, was observed to relax the mesenteric arterioles. These relaxations were NO-dependent and occurred via &agr;-2 receptor activity. The observed potency of agmatine (EC50, 138.7 ± 12.1 ± μM; n=22), was 40 fold higher than L-arginine itself (EC50, 18.3 ± 1.3 mM; n = 5). This suggested us to propose alternative parallel mechanism for L-arginine mediated vascular relaxation via arginine decarboxylase activity. In addition, the biomechanics of rat mesentery is important in regulation of vascular tone. We developed 2D finite element models that described the vascular mechanics of rat mesentery. With an inverse estimation approach, we identified the elasticity parameters characterizing alterations in normotensive and hypertensive Dahl rats. Our efforts were towards guiding current studies that optimized cardiovascular intervention and assisted in the development of new therapeutic strategies. These observations may have significant implications towards alternatives to present methods for NO delivery as a therapeutic target. Our work shall prove to be beneficial in assisting the delivery of NO in the vasculature thus minimizing the cardiovascular risk in handling abnormalities, such as hypertension.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent years, corporate reputation has gained the attention of many scholars in the strategic management and related fields. There is a general consensus that higher corporate reputation is positively related to firm success or performance. However, the link is not always straightforward; as a result, it calls for researchers to dedicate their efforts to investigate the causes and effects of firm reputation and how it is related to performance. In this doctoral dissertation, innovation is suggested as a mediating variable in this relationship. Innovation is a critical factor for firm success and survival. Highly reputed firms are in a more advantageous position to attract critical resources for innovation such as human and financial capital. These firms face constant pressure from external stakeholders, e.g. the general public, or customers, to achieve and remain at high levels of innovativeness. As a result, firms are in constant search, internally or externally, for new technologies expanding their knowledge base. Consequently, these firms engage in firms acquisitions. In the dissertation, the author assesses the effects of domestic versus international acquisitions as well as related versus unrelated acquisitions on the level of innovativeness and performance. Building upon an established measure of firm-level degree of internationalization (DOI), the dissertation proposes a more detailed and enhanced measure for the firm's DOI. It is modeled as an interaction effect between corporate reputation and resources for innovation. More specifically, firms with higher levels of internationalization will have access to resources for innovation, i.e. human and financial capital, at a global scale. Additionally, the distance between firms and higher education institutions, i.e. universities, is considered as another interaction effect for the human capital attraction. The dissertation is built on two theoretical frameworks, the resource-based view of the firm and institutional theory. It studies 211 U.S. firms using a longitudinal panel data structure from 2006 to 2012. It utilizes a linear dynamic panel data estimation methodology for its hypotheses analyses. Results confirm the hypotheses proposed in the study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hypertension, a major risk factor in the cardiovascular system, is characterized by an increase in the arterial blood pressure. High dietary sodium is linked to multiple cardiovascular disorders including hypertension. Salt sensitivity, a measure of how the blood pressure responds to salt intake is observed in more than 50% of the hypertension cases. Nitric Oxide (NO), as an endogenous vasodilator serves many important biological roles in the cardiovascular physiology including blood pressure regulation. The physiological concentrations for NO bioactivity are reported to be in 0-500 nM range. Notably, the vascular response to NO is highly regulated within a small concentration spectrum. Hence, much uncertainty surrounds how NO modulates diverse signaling mechanisms to initiate vascular relaxation and alleviate hypertension. Regulating the availability of NO in the vasculature has demonstrated vasoprotective effects. In addition, modulating the NO release by different means has proved to restore endothelial function. In this study we addressed parameters that regulated NO release in the vasculature, in physiology and pathophysiology such as salt sensitive hypertension. We showed that, in the rat mesenteric arterioles, Ca2+ induced rapid relaxation (time constants 20.8 ± 2.2 sec) followed with a much slower constriction after subsequent removal of the stimulus (time constants 104.8 ± 10.0 sec). An interesting observation was that a fourfold increase in the Ca2+ frequency improved the efficacy of arteriolar relaxation by 61.1%. Our results suggested that, Ca2+ frequency-dependent transient release of NO from the endothelium carried encoded information; which could be translated into different steady state vascular tone. Further, Agmatine, a metabolite of L-arginine, as a ligand, was observed to relax the mesenteric arterioles. These relaxations were NO-dependent and occurred via α-2 receptor activity. The observed potency of agmatine (EC50, 138.7 ± 12.1 µM; n=22), was 40 fold higher than L-arginine itself (EC50, 18.3 ± 1.3 mM; n = 5). This suggested us to propose alternative parallel mechanism for L-arginine mediated vascular relaxation via arginine decarboxylase activity. In addition, the biomechanics of rat mesentery is important in regulation of vascular tone. We developed 2D finite element models that described the vascular mechanics of rat mesentery. With an inverse estimation approach, we identified the elasticity parameters characterizing alterations in normotensive and hypertensive Dahl rats. Our efforts were towards guiding current studies that optimized cardiovascular intervention and assisted in the development of new therapeutic strategies. These observations may have significant implications towards alternatives to present methods for NO delivery as a therapeutic target. Our work shall prove to be beneficial in assisting the delivery of NO in the vasculature thus minimizing the cardiovascular risk in handling abnormalities, such as hypertension.