6 resultados para Earth-based plasters

em Digital Commons at Florida International University


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The present research is carried out from the viewpoint of primarily space applications where human lives may be in danger if they are to work under these conditions. This work proposes to develop a one-degree-of-freedom (1-DOF) force-reflecting manual controller (FRMC) prototype for teleoperation, and address the effects of time delays commonly found in space applications where the control is accomplished via the earth-based control stations. To test the FRMC, a mobile robot (PPRK) and a slider-bar were developed and integrated to the 1-DOF FRMC. The software developed in Visual Basic is able to telecontrol any platform that uses an SV203 controller through the internet and it allows the remote system to send feedback information which may be in the form of visual or force signals. Time delay experiments were conducted on the platform and the effects of time delay on the FRMC system operation have been studied and delineated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The composition and distribution of diatom algae inhabiting estuaries and coasts of the subtropical Americas are poorly documented, especially relative to the central role diatoms play in coastal food webs and to their potential utility as sentinels of environmental change in these threatened ecosystems. Here, we document the distribution of diatoms among the diverse habitat types and long environmental gradients represented by the shallow topographic relief of the South Florida, USA, coastline. A total of 592 species were encountered from 38 freshwater, mangrove, and marine locations in the Everglades wetland and Florida Bay during two seasonal collections, with the highest diversity occurring at sites of high salinity and low water column organic carbon concentration (WTOC). Freshwater, mangrove, and estuarine assemblages were compositionally distinct, but seasonal differences were only detected in mangrove and estuarine sites where solute concentration differed greatly between wet and dry seasons. Epiphytic, planktonic, and sediment assemblages were compositionally similar, implying a high degree of mixing along the shallow, tidal, and storm-prone coast. The relationships between diatom taxa and salinity, water total phosphorus (WTP), water total nitrogen (WTN), and WTOC concentrations were determined and incorporated into weighted averaging partial least squares regression models. Salinity was the most influential variable, resulting in a highly predictive model (r apparent 2  = 0.97, r jackknife 2  = 0.95) that can be used in the future to infer changes in coastal freshwater delivery or sea-level rise in South Florida and compositionally similar environments. Models predicting WTN (r apparent 2  = 0.75, r jackknife 2  = 0.46), WTP (r apparent 2  = 0.75, r jackknife 2  = 0.49), and WTOC (r apparent 2  = 0.79, r jackknife 2  = 0.57) were also strong, suggesting that diatoms can provide reliable inferences of changes in solute delivery to the coastal ecosystem.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Every space launch increases the overall amount of space debris. Satellites have limited awareness of nearby objects that might pose a collision hazard. Astrometric, radiometric, and thermal models for the study of space debris in low-Earth orbit have been developed. This modeled approach proposes analysis methods that provide increased Local Area Awareness for satellites in low-Earth and geostationary orbit. Local Area Awareness is defined as the ability to detect, characterize, and extract useful information regarding resident space objects as they move through the space environment surrounding a spacecraft. The study of space debris is of critical importance to all space-faring nations. Characterization efforts are proposed using long-wave infrared sensors for space-based observations of debris objects in low-Earth orbit. Long-wave infrared sensors are commercially available and do not require solar illumination to be observed, as their received signal is temperature dependent. The characterization of debris objects through means of passive imaging techniques allows for further studies into the origination, specifications, and future trajectory of debris objects. Conclusions are made regarding the aforementioned thermal analysis as a function of debris orbit, geometry, orientation with respect to time, and material properties. Development of a thermal model permits the characterization of debris objects based upon their received long-wave infrared signals. Information regarding the material type, size, and tumble-rate of the observed debris objects are extracted. This investigation proposes the utilization of long-wave infrared radiometric models of typical debris to develop techniques for the detection and characterization of debris objects via signal analysis of unresolved imagery. Knowledge regarding the orbital type and semi-major axis of the observed debris object are extracted via astrometric analysis. This knowledge may aid in the constraint of the admissible region for the initial orbit determination process. The resultant orbital information is then fused with the radiometric characterization analysis enabling further characterization efforts of the observed debris object. This fused analysis, yielding orbital, material, and thermal properties, significantly increases a satellite's Local Area Awareness via an intimate understanding of the debris environment surrounding the spacecraft.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Community ecology seeks to understand and predict the characteristics of communities that can develop under different environmental conditions, but most theory has been built on analytical models that are limited in the diversity of species traits that can be considered simultaneously. We address that limitation with an individual-based model to simulate assembly of fish communities characterized by life history and trophic interactions with multiple physiological tradeoffs as constraints on species performance. Simulation experiments were carried out to evaluate the distribution of 6 life history and 4 feeding traits along gradients of resource productivity and prey accessibility. These experiments revealed that traits differ greatly in importance for species sorting along the gradients. Body growth rate emerged as a key factor distinguishing community types and defining patterns of community stability and coexistence, followed by egg size and maximum body size. Dominance by fast-growing, relatively large, and fecund species occurred more frequently in cases where functional responses were saturated (i.e. high productivity and/or prey accessibility). Such dominance was associated with large biomass fluctuations and priority effects, which prevented richness from increasing with productivity and may have limited selection on secondary traits, such as spawning strategies and relative size at maturation. Our results illustrate that the distribution of species traits and the consequences for community dynamics are intimately linked and strictly dependent on how the benefits and costs of these traits are balanced across different conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We developed diatom-based prediction models of hydrology and periphyton abundance to inform assessment tools for a hydrologically managed wetland. Because hydrology is an important driver of ecosystem change, hydrologic alterations by restoration efforts could modify biological responses, such as periphyton characteristics. In karstic wetlands, diatoms are particularly important components of mat-forming calcareous periphyton assemblages that both respond and contribute to the structural organization and function of the periphyton matrix. We examined the distribution of diatoms across the Florida Everglades landscape and found hydroperiod and periphyton biovolume were strongly correlated with assemblage composition. We present species optima and tolerances for hydroperiod and periphyton biovolume, for use in interpreting the directionality of change in these important variables. Predictions of these variables were mapped to visualize landscape-scale spatial patterns in a dominant driver of change in this ecosystem (hydroperiod) and an ecosystem-level response metric of hydrologic change (periphyton biovolume). Specific diatom assemblages inhabiting periphyton mats of differing abundance can be used to infer past conditions and inform management decisions based on how assemblages are changing. This study captures diatom responses to wide gradients of hydrology and periphyton characteristics to inform ecosystem-scale bioassessment efforts in a large wetland.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Every space launch increases the overall amount of space debris. Satellites have limited awareness of nearby objects that might pose a collision hazard. Astrometric, radiometric, and thermal models for the study of space debris in low-Earth orbit have been developed. This modeled approach proposes analysis methods that provide increased Local Area Awareness for satellites in low-Earth and geostationary orbit. Local Area Awareness is defined as the ability to detect, characterize, and extract useful information regarding resident space objects as they move through the space environment surrounding a spacecraft. The study of space debris is of critical importance to all space-faring nations. Characterization efforts are proposed using long-wave infrared sensors for space-based observations of debris objects in low-Earth orbit. Long-wave infrared sensors are commercially available and do not require solar illumination to be observed, as their received signal is temperature dependent. The characterization of debris objects through means of passive imaging techniques allows for further studies into the origination, specifications, and future trajectory of debris objects. Conclusions are made regarding the aforementioned thermal analysis as a function of debris orbit, geometry, orientation with respect to time, and material properties. Development of a thermal model permits the characterization of debris objects based upon their received long-wave infrared signals. Information regarding the material type, size, and tumble-rate of the observed debris objects are extracted. This investigation proposes the utilization of long-wave infrared radiometric models of typical debris to develop techniques for the detection and characterization of debris objects via signal analysis of unresolved imagery. Knowledge regarding the orbital type and semi-major axis of the observed debris object are extracted via astrometric analysis. This knowledge may aid in the constraint of the admissible region for the initial orbit determination process. The resultant orbital information is then fused with the radiometric characterization analysis enabling further characterization efforts of the observed debris object. This fused analysis, yielding orbital, material, and thermal properties, significantly increases a satellite’s Local Area Awareness via an intimate understanding of the debris environment surrounding the spacecraft.