5 resultados para EXTRACELLULAR BIOSYNTHESIS
em Digital Commons at Florida International University
Resumo:
Quorum sensing (QS) is a process that allows bacteria to sense the population density of cells around them by communicating with each other via autoinducer molecules. This cross-communication is crucial in the regulation of bacterial processes such as bioluminescence, virulence, and biofilm formation. Previous research by Milburn and Makemson on Vibrio harveyi suggested that in addition of the known biosynthesis of three well-characterized autoinducers, dozens of unknown molecules are also produced and released to the environment by V. harveyi. This study was performed using electrospray tandem mass spectrometry with the purpose of detection and characterization of the extracellular molecules produced by V. harveyi, and assessment of their relationship to QS. A total of 11 molecules were characterized, from which three could be related to QS. These findings provide a glimpse of the nature of novel secondary metabolites produced by V. harveyi and provide the groundwork for further research.
Resumo:
Polyketides derived from dinoflagellates are among the most complex and unique structures identified to date. The carbon framework of all polyketides is assembled by a polyketide synthase (PKS). No studies of the biosynthesis of dinoflagellate derived polyketides at the genomic level have been reported to date. Nine strains representing seven different species of dinoflagellates were screened for the presence of type I and type II polyketide synthases (PKS) by PCR and RT-PCR. Seven of the nine strains yielded products that were homologous with known and putative type I polyketide synthases. In each case, the presence of a PKS gene was correlated with the presence of bacteria in the cultures as identified by amplification of the bacterial 16S rRNA gene. However, residual phylogenetic signals, resistance to methylation sensitive restriction enzymes and the lack of hybridization to bacterial isolates support a dinoflagellate origin for most of these genes. ^ A more detailed analysis of Karenia brevis, a toxic marine dinoflagellate endemic to the Gulf of Mexico, also supports the hypothesis that dinoflagellates have polyketide synthase genes. Blooms of this harmful alga cause fish kills, marine mammal mortalities and neurotoxic shellfish poisonings. These harmful effects are attributed to a suite of polyketide secondary metabolites known as the brevetoxins. PKS encoding genes amplified from K. brevis culture were found to be similar to PKS genes from the closely related protist, Cryptosporidium parvum. This suggested that these genes originate from the dinoflagellate. However, K. brevis has not been grown axenically. The associated bacteria might be the source of the toxins or the PKS genes. This dissertation reports the localization of these PKS encoding genes by a combination of flow cytometry/PCR and fluorescence in situ hybridization (FISH). Two genes localized exclusively to K. brevis cells while a third localized to both K. brevis and associated bacteria. While these genes have not yet been linked to toxin production, the work describes the first definitive evidence of resident PKS genes in any dinoflagellate. ^
Resumo:
Pahayokolides A-D are cytotoxic cyclic polypeptides produced by the freshwater cyanobacterium Lyngbya sp. strain 15-2 that possess an unusual β-amino acid, 3-amino-2,5,7,8-tetrahydroxy-10-methylundecanoic acid (Athmu). The absolute configuration of pahayokolides A-D was determined using advanced Marfey’s method. It was also confirmed that a pendant N-acetyl- N-methyl leucine moiety in pahayokolide A was absent in pahayokolides B and pahayokolides C-D were conformers of pahayokolide A. Feeding experiments indicated that the biosynthesis of the Athmu sidechain arises from leucine or α-ketoisovalerate, however could not be further extended by three rounds of condensation with malonate units. Putative four peptide and one unique polyketide synthetases in Lyngbya sp. strain 15-2 were identified by using a PCR method and degenerate primers derived from conserved core sequences of known NRPSs and PKSs. Identification of one unique KS domain conflicted with the logic rule that the long side chain of Athmu was assembled by three rounds of ketide extensions if PKSs were involved. A gene cluster (pah) encoding a peptide synthetase putatively producing pahayokolide was cloned, partially sequenced and characterized. Seven modules of the non-ribosomal peptide synthetase (NRPS) were identified. Ten additional opening reading frames (ORFs) were found, responsible for peptide resistance, transport and degradation. Although the predicted substrate specificities of NRPS agreed with the structure of pahayokolide A partially, the disagreement could be explained. However, no PKS gene was found in the pah gene cluster.
Resumo:
Cyanobacteria are photosynthetic prokaryotes that can be found in freshwater and marine environments as well as in soil. These organisms produce a variety of different biologically active compounds exhibiting anti-bacterial, anti-fungal and anti-cancer properties among others. In this study, cyanobacterial isolates were screened for their ability to produce extracellular antibacterial products. Cyanobacteria were isolated from fresh water and soil samples collected in the Pembroke Pines, FL area. Twenty- seven strains of cyanobacteria were isolated belonging to the following genera: Limnothrix, Nostoc, Fischerella, Anabaena, Pseudoanabaena, Lyngbya, Leptolyngbya, Tychonema, and Calothrix. Individual strains were grown in liquid culture in laboratory conditions. Following 14-day cultivation, the culture liquid was filtered and tested for activity against the following bacteria: Escherichia coli, Bacillus megatarium, Staphylococcus aureus, and Micrococcus luteus. Among all genera of cyanobacterial strains tested, Fischerella exhibited the greatest inhibitory activity. An attempt was made to isolate the active compound from the culture liquid of the active strains. Lipophilic extracts from culture liquid were obtained from three selected Fischerella strains. The extracts proved to have varying levels of activity against the tested bacteria. Inhibitory activity from all three Fischerella strains was detected against B. megatarium and M luteus. The only strain that was active against S. aureus was Fischerella sp. 114-12 while none of the extracts showed activity against E. coli. This kind of screening has potential pharmaceutical and agricultural benefits, including possible discovery of novel antibiotics.
Resumo:
Pahayokolides A-D are cytotoxic cyclic polypeptides produced by the freshwater cyanobacterium Lyngbya sp. strain 15-2 that possess an unusual β-amino acid, 3-amino-2,5,7,8-tetrahydroxy-10-methylundecanoic acid (Athmu). The absolute configuration of pahayokolides A-D was determined using advanced Marfey’s method. It was also confirmed that a pendant N-acetyl-N-methyl leucine moiety in pahayokolide A was absent in pahayokolides B and pahayokolides C-D were conformers of pahayokolide A. Feeding experiments indicated that the biosynthesis of the Athmu sidechain arises from leucine or α-ketoisovalerate, however could not be further extended by three rounds of condensation with malonate units. Putative four peptide and one unique polyketide synthetases in Lyngbya sp. strain 15-2 were identified by using a PCR method and degenerate primers derived from conserved core sequences of known NRPSs and PKSs. Identification of one unique KS domain conflicted with the logic rule that the long side chain of Athmu was assembled by three rounds of ketide extensions if PKSs were involved. A gene cluster (pah) encoding a peptide synthetase putatively producing pahayokolide was cloned, partially sequenced and characterized. Seven modules of the non-ribosomal peptide synthetase (NRPS) were identified. Ten additional opening reading frames (ORFs) were found, responsible for peptide resistance, transport and degradation. Although the predicted substrate specificities of NRPS agreed with the structure of pahayokolide A partially, the disagreement could be explained. However, no PKS gene was found in the pah gene cluster.