11 resultados para EXCITED-STATE INTERACTIONS
em Digital Commons at Florida International University
Resumo:
This dissertation presents a study of the D( e, e′p)n reaction carried out at the Thomas Jefferson National Accelerator Facility (Jefferson Lab) for a set of fixed values of four-momentum transfer Q 2 = 2.1 and 0.8 (GeV/c)2 and for missing momenta pm ranging from pm = 0.03 to pm = 0.65 GeV/c. The analysis resulted in the determination of absolute D(e,e′ p)n cross sections as a function of the recoiling neutron momentum and it's scattering angle with respect to the momentum transfer [vector] q. The angular distribution was compared to various modern theoretical predictions that also included final state interactions. The data confirmed the theoretical prediction of a strong anisotropy of final state interaction contributions at Q2 of 2.1 (GeV/c)2 while at the lower Q2 value, the anisotropy was much less pronounced. At Q2 of 0.8 (GeV/c)2, theories show a large disagreement with the experimental results. The experimental momentum distribution of the bound proton inside the deuteron has been determined for the first time at a set of fixed neutron recoil angles. The momentum distribution is directly related to the ground state wave function of the deuteron in momentum space. The high momentum part of this wave function plays a crucial role in understanding the short-range part of the nucleon-nucleon force. At Q2 = 2.1 (GeV/c)2, the momentum distribution determined at small neutron recoil angles is much less affected by FSI compared to a recoil angle of 75°. In contrast, at Q2 = 0.8 (GeV/c)2 there seems to be no region with reduced FSI for larger missing momenta. Besides the statistical errors, systematic errors of about 5–6 % were included in the final results in order to account for normalization uncertainties and uncertainties in the determi- nation of kinematic veriables. The measurements were carried out using an electron beam energy of 2.8 and 4.7 GeV with beam currents between 10 to 100 &mgr; A. The scattered electrons and the ejected protons originated from a 15cm long liquid deuterium target, and were detected in conicidence with the two high resolution spectrometers of Hall A at Jefferson Lab.^
Resumo:
A high resolution study of the quasielastic 2 H(e, e'p)n reaction was performed in Hall A at the Thomas Jefferson Accelerator Facility in Newport News, Virginia. The measurements were performed at a central momentum transfer of : q: ∼ 2400 MeV/c, and at a central energy transfer of ω ∼ 1500 MeV, a four momentum transfer Q2 = 3.5 (GeV/c)2, covering missing momenta from 0 to 0.5 GeV/c. The majority of the measurements were performed at Φ = 180° and a small set of measurements were done at Φ = 0°. The Hall A High Resolution Spectrometers (HRS) were used to detect coincident electrons and protons, respectively. Absolute 2H(e, e'p) n cross sections were obtained as a function of the recoiling neutron scattering angle with respect to [special characters omitted]. The experimental results were compared to a Plane Wave Impulse Approximation (PWIA) model and to a calculation that includes Final State Interaction (FSI) effects. Experimental 2H(e, e'p)n cross sections were determined with an estimated systematic uncertainty of 7%. The general features of the measured cross sections are reproduced by Glauber based calculations that take the motion of the bound nucleons into account (GEA). Final State Interactions (FSI) contributions were found to depend strongly on the angle of the recoiling neutron with respect to the momentum transfer and on the missing momentum. We found a systematic deviation of the theoretical prediction of about 30%. At small &thetas; nq (&thetas;nq < 60°) the theory overpredicts the cross section while at large &thetas; nq (&thetas;nq > 80°) the theory underestimates the cross sections. We observed an enhancement of the cross section, due to FSI, of about 240%, as compared to PWIA, for a missing momentum of 0.4 GeV/c at an angle of 75°. For missing momentum of 0.5 GeV/c the enhancement of the cross section due to the same FSI effects, was about 270%. This is in agreement with GEA. Standard Glauber calculations predict this large contribution to occur at an angle of 90°. Our results show that GEA better describes the 2H(e, e'p)n reaction.
Resumo:
Natural dissolved organic matter (DOM) is the major absorber of sunlight in most natural waters and a critical component of carbon cycling in aquatic systems. The combined effect of light absorbance properties and related photo-production of reactive species are essential in determining the reactivity of DOM. Optical properties and in particular excitation–emission matrix fluorescence spectroscopy combined with parallel factor analysis (EEM-PARAFAC) have been used increasingly to track sources and fate of DOM. Here we describe studies conducted in water from two estuarine systems in the Florida Everglades, with a salinity gradient of 2 to 37 and dissolved organic carbon concentrations from 19.3 to 5.74 mg C L−1, aimed at assessing how the quantity and quality of DOM is coupled to the formation rates and steady-state concentrations of reactive species including singlet oxygen, hydroxyl radical, and the triplet excited state of DOM. These species were related to optical properties and PARAFAC components of the DOM. The formation rate and steady-state concentration of the carbonate radical was calculated in all samples. The data suggests that formation rates, particularly for singlet oxygen and hydroxyl radicals, are strongly coupled to the abundance of terrestrial humic-like substances. A decrease in singlet oxygen, hydroxyl radical, and carbonate radical formation rates and steady-state concentration along the estuarine salinity gradient was observed as the relative concentration of terrestrial humic-like DOM decreased due to mixing with microbial humic-like and protein-like DOM components, while the formation rate of triplet excited-state DOM did not change. Fluorescent DOM was also found to be more tightly coupled to reactive species generation than chromophoric DOM.
Resumo:
The E01-011 experiment at Jefferson Laboratory (JLab) studied light-to-medium mass Λ hypernuclei via the AZ + e → [special characters omitted] + e' + K+ electroproduction reaction. Precise measurement of hypernuclear ground state masses and excitation energies provides information about the nature of hyperon-nucleon interactions. Until recently, hypernuclei were studied at accelerator facilities with intense π+ and K- meson beams. The poor quality of these beams limited the resolution of the hypernuclear excitation energy spectra to about 1.5 MeV (FWHM). This resolution is not sufficient for resolving the rich structure observed in the excitation spectra. By using a high quality electron beam and employing a new high resolution spectrometer system, this study aims to improve the resolution to a few hundred keV with an absolute precision of about 100 keV for excitation energies. In this work the high-resolution excitation spectra of [special characters omitted], and [special characters omitted] hypernuclei are presented. In an attempt to emphasize the presence of the core-excited states we introduced a novel likelihood approach to particle identification (PID) to serve as an alternative to the commonly used standard hard-cut PID. The new method resulted in almost identical missing mass spectra as obtained by the standard approach. An energy resolution of approximately 400–500 keV (FWHM) has been achieved, an unprecedented value in hypernuclear reaction spectroscopy. For [special characters omitted] the core-excited configuration has been clearly observed with significant statistics. The embedded Λ hyperon increases the excitation energies of the 11B nuclear core by 0.5–1 MeV. The [special characters omitted] spectrum has been observed with significant statistics for the first time. The ground state is bound deeper by roughly 400 keV than currently predicted by theory. Indication for the core-excited doublet, which is unbound in the core itself, is observed. The measurement of [special characters omitted] provides the first study of a d-shell hypernucleus with sub-MeV resolution. Discrepancies of up to 2 MeV between measured and theoretically predicted binding energies are found. Similar disagreement exists when comparing to the [special characters omitted] mirror hypernucleus. Also the core-excited structure observed between the major s-, p- and d-shell Λ orbits is not consistent with the available theoretical calculations. In conclusion, the discrepancies found in this study will provide valuable input for the further development of theoretical models.
Resumo:
The research presented in this dissertation investigated selected processes involving baryons and nuclei in hard scattering reactions. These processes are characterized by the production of particles with large energies and transverse momenta. Through these processes, this work explored both, the constituent (quark) structure of baryons (specifically nucleons and Δ-Isobars), and the mechanisms through which the interactions between these constituents ultimately control the selected reactions. The first of such reactions is the hard nucleon-nucleon elastic scattering, which was studied here considering the quark exchange between the nucleons to be the dominant mechanism of interaction in the constituent picture. In particular, it was found that an angular asymmetry exhibited by proton-neutron elastic scattering data is explained within this framework if a quark-diquark picture dominates the nucleon’s structure instead of a more traditional SU(6) three quarks picture. The latter yields an asymmetry around 90o center of mass scattering with a sign opposite to what is experimentally observed. The second process is the hard breakup by a photon of a nucleon-nucleon system in light nuclei. Proton-proton (pp) and proton-neutron (pn) breakup in 3He, and ΔΔ-isobars production in deuteron breakup were analyzed in the hard rescattering model (HRM), which in conjunction with the quark interchange mechanism provides a Quantum Chromodynamics (QCD) description of the reaction. Through the HRM, cross sections for both channels in 3He photodisintegration were computed without the need of a fitting parameter. The results presented here for pp breakup show excellent agreement with recent experimental data. In ΔΔ-isobars production in deuteron breakup, HRM angular distributions for the two ΔΔ channels were compared to the pn channel and to each other. An important prediction fromthis study is that the Δ++Δ- channel consistently dominates Δ+Δ0, which is in contrast with models that unlike the HRM consider a ΔΔ system in the initial state of the interaction. For such models both channels should have the same strength. These results are important in developing a QCD description of the atomic nucleus.
Resumo:
How do local homeland security organizations respond to catastrophic events such as hurricanes and acts of terrorism? Among the most important aspects of this response are these organizations ability to adapt to the uncertain nature of these "focusing events" (Birkland 1997). They are often behind the curve, seeing response as a linear process, when in fact it is a complex, multifaceted process that requires understanding the interactions between the fiscal pressures facing local governments, the institutional pressures of working within a new regulatory framework and the political pressures of bringing together different levels of government with different perspectives and agendas. ^ This dissertation has focused on tracing the factors affecting the individuals and institutions planning, preparing, responding and recovering from natural and man-made disasters. Using social network analysis, my study analyzes the interactions between the individuals and institutions that respond to these "focusing events." In practice, it is the combination of budgetary, institutional, and political pressures or constraints interacting with each other which resembles a Complex Adaptive System (CAS). ^ To investigate this system, my study evaluates the evolution of two separate sets of organizations composed of first responders (Fire Chiefs, Emergency Management Coordinators) and community volunteers organized in the state of Florida over the last fifteen years. Using a social network analysis approach, my dissertation analyzes the interactions between Citizen Corps Councils (CCCs) and Community Emergency Response Teams (CERTs) in the state of Florida from 1996–2011. It is the pattern of interconnections that occur over time that are the focus of this study. ^ The social network analysis revealed an increase in the amount and density of connections between these organizations over the last fifteen years. The analysis also exposed the underlying patterns in these connections; that as the networks became more complex they also became more decentralized though not in any uniform manner. The present study brings to light a story of how communities have adapted to the ever changing circumstances that are sine qua non of natural and man-made disasters.^
Resumo:
In response to a crime epidemic afflicting Latin America since the early 1990s, several countries in the region have resorted to using heavy-force police or military units to physically retake territories de facto controlled by non-State criminal or insurgent groups. After a period of territory control, the heavy forces hand law enforcement functions in the retaken territories to regular police officers, with the hope that the territories and their populations will remain under the control of the state. To a varying degree, intensity, and consistency, Brazil, Colombia, Mexico, and Jamaica have adopted such policies since the mid-1990s. During such operations, governments need to pursue two interrelated objectives: to better establish the state’s physical presence and to realign the allegiance of the population in those areas toward the state and away from the non-State criminal entities. From the perspective of law enforcement, such operations entail several critical decisions and junctions, such as: Whether or not to announce the force insertion in advance. The decision trades off the element of surprise and the ability to capture key leaders of the criminal organizations against the ability to minimize civilian casualties and force levels. The latter, however, may allow criminals to go to ground and escape capture. Governments thus must decide whether they merely seek to displace criminal groups to other areas or maximize their decapitation capacity. Intelligence flows rarely come from the population. Often, rival criminal groups are the best source of intelligence. However, cooperation between the State and such groups that goes beyond using vetted intelligence provided by the groups, such as a State tolerance for militias, compromises the rule-of-law integrity of the State and ultimately can eviscerate even public safety gains. Sustaining security after initial clearing operations is at times even more challenging than conducting the initial operations. Although unlike the heavy forces, traditional police forces, especially if designed as community police, have the capacity to develop trust of the community and ultimately focus on crime prevention, developing such trust often takes a long time. To develop the community’s trust, regular police forces need to conduct frequent on-foot patrols with intensive nonthreatening interactions with the population and minimize the use of force. Moreover, sufficiently robust patrol units need to be placed in designated beats for substantial amount of time, often at least over a year. Establishing oversight mechanisms, including joint police-citizens’ boards, further facilities building trust in the police among the community. After disruption of the established criminal order, street crime often significantly rises and both the heavy-force and community-police units often struggle to contain it. The increase in street crime alienates the population of the retaken territory from the State. Thus developing a capacity to address street crime is critical. Moreover, the community police units tend to be vulnerable (especially initially) to efforts by displaced criminals to reoccupy the cleared territories. Losing a cleared territory back to criminal groups is extremely costly in terms of losing any established trust and being able to recover it. Rather than operating on a priori determined handover schedule, a careful assessment of the relative strength of regular police and criminal groups post-clearing operations is likely to be a better guide for timing the handover from heavy forces to regular police units. Cleared territories often experience not only a peace dividend, but also a peace deficit – in the rise new serious crime (in addition to street crime). Newly – valuable land and other previously-inaccessible resources can lead to land speculation and forced displacement; various other forms of new crime can also significantly rise. Community police forces often struggle to cope with such crime, especially as it is frequently linked to legal business. Such new crime often receives little to no attention in the design of the operations to retake territories from criminal groups. But without developing an effective response to such new crime, the public safety gains of the clearing operations can be altogether lost.
Resumo:
Coral reefs are among the most productive ecosystems in the world. Yet, with their recent declines due to disease, climate change, and overfishing, restoration of these habitats is one of the main concerns for ecologists, resource managers, and government organizations. Coral reef restoration aims to promote key ecosystem processes to shift these habitats to their historical state of high coral cover, but few studies have focused on effective ways to promote resilience. In addition, little is known about the impact of restoration on the fish communities. The aim of this study is to understand how the community of herbivorous fishes is affected by the density of coral outplants inside a special protection area located in the Florida Keys National Marine Sanctuary. Grazing rates, number of visits and time spent foraging were compared using video footage of sites previously devoid of corals, and six months after coral restorations had occurred. Coral transplantations did not appear to attract herbivores nor increase grazing rates of fishes. Instead Sparisoma and Acanthurus fishes appear to respond to changes in the environment by modifying their grazing behavior. However, there was an observed increase in visits by Acanthurus species after transplantation for all the sites sampled within the reef. These fishes seemed to prefer low coral cover sites for grazing. This study highlights the importance of examining coral restorations impacts at the community level. Understanding how restoration influences herbivores and other guilds of reef fishes will allow individuals to not only determine if these habitats are returning to their “original” state, but provide more information on the ways these systems cope with changes in the environment.
Resumo:
The present study comparatively examined the socio-political and economic transformation of the indigenous Sámi in Sweden and the Indian American in the United States of America occurring first as a consequence of colonization and later as a product of interaction with the modern territorial and industrial state, from approximately 1500 to 1900. The first colonial encounters of the Europeans with these autochthonous populations ultimately created an imagery of the exotic Other and of the noble savage. Despite these disparaging representations, the cross-cultural settings in which these interactions took place also produced the hybrid communities and syncretic life that allowed levels of cultural accommodation, autonomous space, and indigenous agency to emerge. By the nineteenth century, however, the modern territorial and industrial state rearranges the dynamics and reaches of power across a redefined territorial sovereign space, consequently, remapping belongingness and identity. In this context, the status of indigenous peoples, as in the case of Sámi and of Indian Americans, began to change at par with industrialization and with modernity. At this point in time, indigenous populations became a hindrance to be dealt with the legal re-codification of Indigenousness into a vacuumed limbo of disenfranchisement. It is, thus, the modern territorial and industrial state that re-creates the exotic into an indigenous Other. The present research showed how the initial interaction between indigenous and Europeans changed with the emergence of the modern state, demonstrating that the nineteenth century, with its fundamental impulses of industrialism and modernity, not only excluded and marginalized indigenous populations because they were considered unfit to join modern society, it also re-conceptualized indigenous identity into a constructed authenticity.
Resumo:
The present study comparatively examined the socio-political and economic transformation of the indigenous Sámi in Sweden and the Indian American in the United States of America occurring first as a consequence of colonization and later as a product of interaction with the modern territorial and industrial state, from approximately 1500 to 1900. ^ The first colonial encounters of the Europeans with these autochthonous populations ultimately created an imagery of the exotic Other and of the noble savage. Despite these disparaging representations, the cross-cultural settings in which these interactions took place also produced the hybrid communities and syncretic life that allowed levels of cultural accommodation, autonomous space, and indigenous agency to emerge. By the nineteenth century, however, the modern territorial and industrial state rearranges the dynamics and reaches of power across a redefined territorial sovereign space, consequently, remapping belongingness and identity. In this context, the status of indigenous peoples, as in the case of Sámi and of Indian Americans, began to change at par with industrialization and with modernity. At this point in time, indigenous populations became a hindrance to be dealt with the legal re-codification of Indigenousness into a vacuumed limbo of disenfranchisement. It is, thus, the modern territorial and industrial state that re-creates the exotic into an indigenous Other. ^ The present research showed how the initial interaction between indigenous and Europeans changed with the emergence of the modern state, demonstrating that the nineteenth century, with its fundamental impulses of industrialism and modernity, not only excluded and marginalized indigenous populations because they were considered unfit to join modern society, it also re-conceptualized indigenous identity into a constructed authenticity.^