3 resultados para ENERGY ANALYSIS
em Digital Commons at Florida International University
Resumo:
The need for efficient, sustainable, and planned utilization of resources is ever more critical. In the U.S. alone, buildings consume 34.8 Quadrillion (1015) BTU of energy annually at a cost of $1.4 Trillion. Of this energy 58% is utilized for heating and air conditioning. ^ Several building energy analysis tools have been developed to assess energy demands and lifecycle energy costs in buildings. Such analyses are also essential for an efficient HVAC design that overcomes the pitfalls of an under/over-designed system. DOE-2 is among the most widely known full building energy analysis models. It also constitutes the simulation engine of other prominent software such as eQUEST, EnergyPro, PowerDOE. Therefore, it is essential that DOE-2 energy simulations be characterized by high accuracy. ^ Infiltration is an uncontrolled process through which outside air leaks into a building. Studies have estimated infiltration to account for up to 50% of a building's energy demand. This, considered alongside the annual cost of buildings energy consumption, reveals the costs of air infiltration. It also stresses the need that prominent building energy simulation engines accurately account for its impact. ^ In this research the relative accuracy of current air infiltration calculation methods is evaluated against an intricate Multiphysics Hygrothermal CFD building envelope analysis. The full-scale CFD analysis is based on a meticulous representation of cracking in building envelopes and on real-life conditions. The research found that even the most advanced current infiltration methods, including in DOE-2, are at up to 96.13% relative error versus CFD analysis. ^ An Enhanced Model for Combined Heat and Air Infiltration Simulation was developed. The model resulted in 91.6% improvement in relative accuracy over current models. It reduces error versus CFD analysis to less than 4.5% while requiring less than 1% of the time required for such a complex hygrothermal analysis. The algorithm used in our model was demonstrated to be easy to integrate into DOE-2 and other engines as a standalone method for evaluating infiltration heat loads. This will vastly increase the accuracy of such simulation engines while maintaining their speed and ease of use characteristics that make them very widely used in building design.^
Resumo:
The need for efficient, sustainable, and planned utilization of resources is ever more critical. In the U.S. alone, buildings consume 34.8 Quadrillion (1015) BTU of energy annually at a cost of $1.4 Trillion. Of this energy 58% is utilized for heating and air conditioning. Several building energy analysis tools have been developed to assess energy demands and lifecycle energy costs in buildings. Such analyses are also essential for an efficient HVAC design that overcomes the pitfalls of an under/over-designed system. DOE-2 is among the most widely known full building energy analysis models. It also constitutes the simulation engine of other prominent software such as eQUEST, EnergyPro, PowerDOE. Therefore, it is essential that DOE-2 energy simulations be characterized by high accuracy. Infiltration is an uncontrolled process through which outside air leaks into a building. Studies have estimated infiltration to account for up to 50% of a building’s energy demand. This, considered alongside the annual cost of buildings energy consumption, reveals the costs of air infiltration. It also stresses the need that prominent building energy simulation engines accurately account for its impact. In this research the relative accuracy of current air infiltration calculation methods is evaluated against an intricate Multiphysics Hygrothermal CFD building envelope analysis. The full-scale CFD analysis is based on a meticulous representation of cracking in building envelopes and on real-life conditions. The research found that even the most advanced current infiltration methods, including in DOE-2, are at up to 96.13% relative error versus CFD analysis. An Enhanced Model for Combined Heat and Air Infiltration Simulation was developed. The model resulted in 91.6% improvement in relative accuracy over current models. It reduces error versus CFD analysis to less than 4.5% while requiring less than 1% of the time required for such a complex hygrothermal analysis. The algorithm used in our model was demonstrated to be easy to integrate into DOE-2 and other engines as a standalone method for evaluating infiltration heat loads. This will vastly increase the accuracy of such simulation engines while maintaining their speed and ease of use characteristics that make them very widely used in building design.
Resumo:
This study is an attempt at achieving Net Zero Energy Building (NZEB) using a solar Organic Rankine Cycle (ORC) based on exergetic and economic measures. The working fluid, working conditions of the cycle, cycle configuration, and solar collector type are considered the optimization parameters for the solar ORC system. In the first section, a procedure is developed to compare ORC working fluids based on their molecular components, temperature-entropy diagram and fluid effects on the thermal efficiency, net power generated, vapor expansion ratio, and exergy efficiency of the Rankine cycle. Fluids with the best cycle performance are recognized in two different temperature levels within two different categories of fluids: refrigerants and non-refrigerants. Important factors that could lead to irreversibility reduction of the solar ORC are also investigated in this study. In the next section, the system requirements needed to maintain the electricity demand of a geothermal air-conditioned commercial building located in Pensacola of Florida is considered as the criteria to select the optimal components and optimal working condition of the system. The solar collector loop, building, and geothermal air conditioning system are modeled using TRNSYS. Available electricity bills of the building and the 3-week monitoring data on the performance of the geothermal system are employed to calibrate the simulation. The simulation is repeated for Miami and Houston in order to evaluate the effect of the different solar radiations on the system requirements. The final section discusses the exergoeconomic analysis of the ORC system with the optimum performance. Exergoeconomics rests on the philosophy that exergy is the only rational basis for assigning monetary costs to a system’s interactions with its surroundings and to the sources of thermodynamic inefficiencies within it. Exergoeconomic analysis of the optimal ORC system shows that the ratio Rex of the annual exergy loss to the capital cost can be considered a key parameter in optimizing a solar ORC system from the thermodynamic and economic point of view. It also shows that there is a systematic correlation between the exergy loss and capital cost for the investigated solar ORC system.