2 resultados para ELEVATED EXPRESSION

em Digital Commons at Florida International University


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Somatic growth in fishes is regulated by a variety of hormones. A central step in this hormonal network is the growth hormone-insulin-like growth factor-I (IGF-I) axis. Studies conducted evaluated the relationship of hepatic IGF-I (hIGF-1) mRNA with growth as affected by feeding regimes (satiation or restricted level; daily or alternate-day feeding), temperatures (high, ambient, low) and by social stress. To develop a cellular means for the quantification of hIGF-I mRNA levels in O. niloticus, hIGF-I cDNA was isolated and cloned. The partial sequence of IGF-I cDNA encodes for signal peptide, mature protein and a portion of the E-domain. A sensitive TaqMan quantitative reverse transcription-polymerase chain reaction (qRT-PCR) assay was developed based on the mature IGF-I. Using the developed qRT-PCR assay a significant positive correlation was observed between hIGF-I mRNA levels and growth rate of fish reared under different feeding regimes (r = 0.64) and temperature conditions (r = 0.64). On the dynamics of hIGF-I gene expression in response to elevated temperature, hIGF-I mRNA levels were significantly elevated after at least 2 days of exposure to warm temperature. This validates the concept that hIGF-I gene expressions are sufficiently sensitive to be used as a rapid growth rate indicator for O. niloticus. The hIGF-I levels have a significant positive correlation with specific growth rate (length; r = 0.92), and with condition factor (r = 0.55). On the effect of social stress, differential alterations in growth rates between the dominant and subordinates were observed which was attributed more to behavioral changes as transduced by physiological regulators. The fish's relative position in the social hierarchy was consistently reflected in the levels of hIGF-I mRNA and the eye color pattern. Subordination depressed hIGF-I levels while dominance stimulated it. These findings have shown that hGF-I level remained positively correlated to growth rate as affected by feeding regime, temperature and social stress. This suggests that hIGF-I plays a key role in controlling growth in O. niloticus and indicates that IGF-I mRNA quantification could prove useful for the rapid assessment of growth rate in this species of fish.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Androgen receptor (AR) is commonly expressed in both the epithelium of normal mammary glands and in breast cancers. AR expression in breast cancers is independent of estrogen receptor alpha (ERα) status and is frequently associated with overexpression of the ERBB2 oncogene. AR signaling effects on breast cancer progression may depend on ERα and ERBB2 status. Up to 30% of human breast cancers are driven by overactive ERBB2 signaling and it is not clear whether AR expression affects any steps of tumor progression in this cohort of patients. To test this, we generated mammary specific Ar depleted mice (MARKO) by combining the floxed allele of Ar with the MMTV-cre transgene on an MMTV-NeuNT background and compared them to littermate MMTV-NeuNT, Arfl/+ control females. Heterozygous MARKO females displayed reduced levels of AR in mammary glands with mosaic AR expression in ductal epithelium. The loss of AR dramatically accelerated the onset of MMTV-NeuNT tumors in female MARKO mice. In this report we show that accelerated MMTV-NeuNT-dependent tumorigenesis is due specifically to the loss of AR, as hormonal levels, estrogen and progesterone receptors expression, and MMTV-NeuNT expression were similar between MARKO and control groups. MMTV-NeuNT induced tumors in both cohorts displayed distinct loss of AR in addition to ERα, PR, and the pioneer factor FOXA1. Erbb3 mRNA levels were significantly elevated in tumors in comparison to normal mammary glands. Thus the loss of AR in mouse mammary epithelium accelerates malignant transformation rather than the rate of tumorigenesis.