9 resultados para ELECTRIC FISH

em Digital Commons at Florida International University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Weakly electric fish produce a dual function electric signal that makes them ideal models for the study of sensory computation and signal evolution. This signal, the electric organ discharge (EOD), is used for communication and navigation. In some families of gymnotiform electric fish, the EOD is a dynamic signal that increases in amplitude during social interactions. Amplitude increase could facilitate communication by increasing the likelihood of being sensed by others or by impressing prospective mates or rivals. Conversely, by increasing its signal amplitude a fish might increase its sensitivity to objects by lowering its electrolocation detection threshold. To determine how EOD modulations elicited in the social context affect electrolocation, I developed an automated and fast method for measuring electroreception thresholds using a classical conditioning paradigm. This method employs a moving shelter tube, which these fish occupy at rest during the day, paired with an electrical stimulus. A custom built and programmed robotic system presents the electrical stimulus to the fish, slides the shelter tube requiring them to follow, and records video of their movements. I trained the electric fish of the genus Sternopygus was trained to respond to a resistive stimulus on this apparatus in 2 days. The motion detection algorithm correctly identifies the responses 91% of the time, with a false positive rate of only 4%. This system allows for a large number of trials, decreasing the amount of time needed to determine behavioral electroreception thresholds. This novel method enables the evaluation the evolutionary interplay between two conflicting sensory forces, social communication and navigation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The South American electric knifefish, Brachyhypopomus gauderio, uses weakly electric fields to see and communicate in the dark. Only one study to date has investigated natural behavior in this species during the breeding season; this study proposed that B. guarerio has an exploded lek polygyny breeding system. To test this hypothesis, artificial marshes simulating the native vegetation, temperature, and water conductivities of the South American subtropics were created to study seasonal variation in associative behavior of B. gauderio during the breeding and non-breeding seasons. Mark/recapture methods were used to keep track of individual fish and their dispersion inside the experimental designs. The experimental design proved to be extremely successful at eliciting reproduction. Differences were found in seasonal variations of social behaviors between adult and juvenile populations. Although no apparent sex. differences in movement patterns were found during the breeding season; a trend for male-male aversion was found, suggesting male-male avoidance as a possible strategy guiding aspects of social behaviors in this species. Further, movement may be a tactic for mate seeking as the individuals who moved the most during the breeding season obtained the most opposite sex interactions. These findings support the exploded lek polygyny model. Social interactions are subject to complex regulation by social, physiologic and ecological factors; the extent to which these associations are repeatable may provide novel insights on the evolution of sociality as it has been shaped by natural selection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The balance between the costs and benefits of conspicuous signals ensures that the expression of those signals is related to the quality of the bearer. Plastic signals could enable males to maximize conspicuous traits to impress mates and competitors, but reduce the expression of those traits to minimize signaling costs, potentially compromising the information conveyed by the signals. ^ I investigated the effect of signal enhancement on the information coded by the biphasic electric signal pulse of the gymnotiform fish Brachyhypopomus gauderio. Increases in population density drive males to enhance the amplitude of their signals. I found that signal amplitude enhancement improves the information about the signaler's size. Furthermore, I found that the elongation of the signal's second phase conveys information about androgen levels in both sexes, gonad size in males and estrogen levels in females. Androgens link the duration of the signal's second phase to other androgen-mediated traits making the signal an honest indicator of reproductive state and aggressive motivation. ^ Signal amplitude enhancement facilitates the assessment of the signaler's resource holding potential, important for male-male interactions, while signal duration provides information about aggressive motivation to same-sex competitors and reproductive state to the opposite sex. Moreover, I found that female signals also change in accordance to the social environment. Females also increase the amplitude of their signal when population density increases and elongate the duration of their signal's second phase when the sex ratio becomes female-biased. Indicating that some degree of sexual selection operates in females. ^ I studied whether male B. gauderio use signal plasticity to reduce the cost of reproductive signaling when energy is limited. Surprisingly, I found that food limitation promotes the investment in reproduction manifested as signal enhancement and elevated androgen levels. The short lifespan and single breeding season of B. gauderio diminishes the advantage of energy savings and gives priority to sustaining reproduction. I conclude that the electric signal of B. gauderio provides reliable information about the signaler, the quality of this information is reinforced rather than degraded with signal enhancement.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Androgens regulate aggression in male vertebrates however the exact role they play in regulating aggression in females is not as well understood. Female aggression is commonplace in many vertebrate groups where it can provide various advantages to the aggressors. I explored whether androgens serve as important hormonal mediators of aggressive behavior in female electric fish. I paired adult females of the weakly-electric fish Brachyhypopomus gauderio in aggressive encounters and compared bloodtestosterone (T) levels of dominant and subordinate groups. Afterwards, I implanted a new set of females with the androgen 5a-dihydrotestosterone (DHT) and compared frequency of different aggressive behaviors to a blank-implanted group. I created dyads ofblank-blank (BB), blank-DHT (BD), and DHT-DHT (DD). I demonstrate that dominant females have higher T-levels than subordinates. I also show that the frequency of aggressive behaviors is dependent upon treatment type. Androgens increased both the intensity and level of female aggression, however the degree and type of aggressive behavior depended on the opponent being fought.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Weakly electric fish use electric fields for communication and location of objects. Electroreceptors that are located around the mouth and along the length of the body are used in order to "decode" the electric organ discharge (EOD). The knollenorgan in Mormyriformes aids in distinguishing between different EODs. Gymnotiformes, however, have no such electroreceptors. How then are Gyrnnotiformes distinguishing between conspecific EODs? In this study scan sampling was investigated to determine whether Gymnotus carapo uses this mechanism to differentiate between distinct EODs. After determining whether Gymnotus carapo was discriminating between neighbor and stranger EODs, these same EODs were played to the test fish either jittered (the EOD of the test fish and that of the playback could not coincide) or non-jittered (the two EODs could coincide). The results show that the test fish was not discriminating between neighbor and stranger EODs. Thus, conclusions about the use of scan sampling by Gymnotus carapo to distinguish between EODs cannot be made.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

I would like to thank Dr. Philip Stoddard for his patience and guidance throughout the past four years. He has not only taught me about behavior and electricity, but he has also taught me how to think scientifically. Vielka Salazar for making herself available to answer my questions and to help me with my projects. Montserrat Alfaro for providing me with support under times of frustration. Fabian A. Pal, who has often made himself available when I needed help to finish my projects, for being supportive, and for believing in me and my abilities. Most importantly, I would like to thank my parents who have shown tremendous support and patience during the past years. I would also like to thank the Honors Committee, specially Dr. Richards for taking the time to review my thesis and helping me modify it. Finally, I would like to thank the MARC program for providing me with financial assistance and the opportunity to perform this project.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Sexually-selected communication signals can be used by competing males to settle contests without incurring the costs of fighting. The ability to dynamically regulate the signal in a context-dependent manner can further minimize the costs of male aggressive interactions. Such is the case in the gymnotiform fish Brachyhypopomus gauderio, which, by coupling its electric organ discharge (EOD) waveform to endocrine systems with circadian, seasonal, and behavioral drivers, can regulate its signal to derive the greatest reproductive benefit. My dissertation research examined the functional role of the EOD plasticity observed in male B. gauderio and the physiological mechanisms that regulate the enhanced male EOD. To evaluate whether social competition drives the EOD changes observed during male-male interactions, I manipulated the number of males in breeding groups to create conditions that exemplified low and high competition and measured their EOD and steroid hormone levels. My results showed that social competition drives the enhancement of the EOD amplitude of male B. gauderio. In addition, changes in the EOD of males due to changes in their social environment were paralleled by changes in the levels of androgens and cortisol. I also examined the relationship between body size asymmetry, EOD waveform parameters, and aggressive physical behaviors during male-male interactions in B. gauderio, in order to understand more fully the role of EOD waveforms as reliable signals. While body size was the best determinant of dominance in male B. gauderio, EOD amplitude reliably predicted body condition, a composite of length and weight, for fish in good body condition. To further characterize the mechanisms underlying the relationship between male-male interactions and EOD plasticity, I identified the expression of the serotonin receptor 1A, a key player in the regulation of aggressive behavior, in the brains of B. gauderio. I also identified putative regulatory regions in this receptor in B. gauderio and other teleost fish, highlighting the presence of additional plasticity. In conclusion, male-male competition seems to be a strong selective driver in the evolution of the male EOD plasticity in B. gauderio via the regulatory control of steroid hormones and the serotonergic system.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Communication signals are shaped by the opposing selection pressures imposed by predators and mates. A dynamic signal might serve as an adaptive compromise between an inconspicuous signal that evades predators and an extravagant signal preferred by females. Such a signal has been described in the gymnotiform electric fish, Brachyhypopomus gauderio, which produces a sexually dimorphic electric organ discharge (EOD). The EOD varies on a circadian rhythm and in response to social cues. This signal plasticity is mediated by the slow action of androgens and rapid action of melanocortins. My dissertation research tested the hypotheses that (1) signal plasticity is related to sociality levels in gymnotiform species, and (2) differences in signal plasticity are regulated by differential sensitivity to androgen and melanocortin hormones. To assess the breadth of dynamic signaling within the order Gymnotiformes, I sampled 13 species from the five gymnotiform families. I recorded EODs to observe spontaneous signal oscillations after which I injected melanocortin hormones, saline control, or presented the fish with a conspecific. I showed that through the co-option of the ancient melanocortin pathway, gymnotiforms dynamically regulate EOD amplitude, spectral frequency, both, or neither. To investigate whether observed EOD plasticities are related to species-specific sociality I tested four species; two territorial, highly aggressive species, Gymnotus carapo and Apteronotus leptorhynchus, a highly gregarious species, Eigenmannia cf. virescens , and an intermediate short-lived species with a fluid social system, Brachyhypopomus gauderio. I examined the relationship between the androgens testosterone and 11-ketotestosterone, the melanocortin α-MSH, and their roles in regulating EOD waveform. I implanted all fish with androgen and blank silicone implants, and injected with α-MSH before and at the peak of implant effect. I found that waveforms of the most territorial and aggressive species were insensitive to hormone treatments; maintaining a static, stereotyped signal that preserves encoding of individual identity. Species with a fluid social system were most responsive to hormone treatments, exhibiting signals that reflect immediate condition and reproductive state. In conclusion, variation in gymnotiform signal plasticity is hormonally regulated and seems to reflect species-specific sociality.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Sexually-selected communication signals can be used by competing males to settle contests without incurring the costs of fighting. The ability to dynamically regulate the signal in a context-dependent manner can further minimize the costs of male aggressive interactions. Such is the case in the gymnotiform fish Brachyhypopomus gauderio, which, by coupling its electric organ discharge (EOD) waveform to endocrine systems with circadian, seasonal, and behavioral drivers, can regulate its signal to derive the greatest reproductive benefit. My dissertation research examined the functional role of the EOD plasticity observed in male B. gauderio and the physiological mechanisms that regulate the enhanced male EOD. To evaluate whether social competition drives the EOD changes observed during male-male interactions, I manipulated the number of males in breeding groups to create conditions that exemplified low and high competition and measured their EOD and steroid hormone levels. My results showed that social competition drives the enhancement of the EOD amplitude of male B. gauderio. In addition, changes in the EOD of males due to changes in their social environment were paralleled by changes in the levels of androgens and cortisol. I also examined the relationship between body size asymmetry, EOD waveform parameters, and aggressive physical behaviors during male-male interactions in B. gauderio, in order to understand more fully the role of EOD waveforms as reliable signals. While body size was the best determinant of dominance in male B. gauderio, EOD amplitude reliably predicted body condition, a composite of length and weight, for fish in good body condition. To further characterize the mechanisms underlying the relationship between male-male interactions and EOD plasticity, I identified the expression of the serotonin receptor 1A, a key player in the regulation of aggressive behavior, in the brains of B. gauderio. I also identified putative regulatory regions in this receptor in B. gauderio and other teleost fish, highlighting the presence of additional plasticity. In conclusion, male-male competition seems to be a strong selective driver in the evolution of the male EOD plasticity in B. gauderio via the regulatory control of steroid hormones and the serotonergic system.