4 resultados para Dynamic processes
em Digital Commons at Florida International University
Resumo:
Physiological processes and local-scale structural dynamics of mangroves are relatively well studied. Regional-scale processes, however, are not as well understood. Here we provide long-term data on trends in structure and forest turnover at a large scale, following hurricane damage in mangrove ecosystems of South Florida, U.S.A. Twelve mangrove vegetation plots were monitored at periodic intervals, between October 1992 and March 2005. Mangrove forests of this region are defined by a −1.5 scaling relationship between mean stem diameter and stem density, mirroring self-thinning theory for mono-specific stands. This relationship is reflected in tree size frequency scaling exponents which, through time, have exhibited trends toward a community average that is indicative of full spatial resource utilization. These trends, together with an asymptotic standing biomass accumulation, indicate that coastal mangrove ecosystems do adhere to size-structured organizing principles as described for upland tree communities. Regenerative dynamics are different between areas inside and outside of the primary wind-path of Hurricane Andrew which occurred in 1992. Forest dynamic turnover rates, however, are steady through time. This suggests that ecological, more-so than structural factors, control forest productivity. In agreement, the relative mean rate of biomass growth exhibits an inverse relationship with the seasonal range of porewater salinities. The ecosystem average in forest scaling relationships may provide a useful investigative tool of mangrove community biomass relationships, as well as offer a robust indicator of general ecosystem health for use in mangrove forest ecosystem management and restoration.
Resumo:
Managed lane strategies are innovative road operation schemes for addressing congestion problems. These strategies operate a lane (lanes) adjacent to a freeway that provides congestion-free trips to eligible users, such as transit or toll-payers. To ensure the successful implementation of managed lanes, the demand on these lanes need to be accurately estimated. Among different approaches for predicting this demand, the four-step demand forecasting process is most common. Managed lane demand is usually estimated at the assignment step. Therefore, the key to reliably estimating the demand is the utilization of effective assignment modeling processes. ^ Managed lanes are particularly effective when the road is functioning at near-capacity. Therefore, capturing variations in demand and network attributes and performance is crucial for their modeling, monitoring and operation. As a result, traditional modeling approaches, such as those used in static traffic assignment of demand forecasting models, fail to correctly predict the managed lane demand and the associated system performance. The present study demonstrates the power of the more advanced modeling approach of dynamic traffic assignment (DTA), as well as the shortcomings of conventional approaches, when used to model managed lanes in congested environments. In addition, the study develops processes to support an effective utilization of DTA to model managed lane operations. ^ Static and dynamic traffic assignments consist of demand, network, and route choice model components that need to be calibrated. These components interact with each other, and an iterative method for calibrating them is needed. In this study, an effective standalone framework that combines static demand estimation and dynamic traffic assignment has been developed to replicate real-world traffic conditions. ^ With advances in traffic surveillance technologies collecting, archiving, and analyzing traffic data is becoming more accessible and affordable. The present study shows how data from multiple sources can be integrated, validated, and best used in different stages of modeling and calibration of managed lanes. Extensive and careful processing of demand, traffic, and toll data, as well as proper definition of performance measures, result in a calibrated and stable model, which closely replicates real-world congestion patterns, and can reasonably respond to perturbations in network and demand properties.^
Resumo:
Managed lane strategies are innovative road operation schemes for addressing congestion problems. These strategies operate a lane (lanes) adjacent to a freeway that provides congestion-free trips to eligible users, such as transit or toll-payers. To ensure the successful implementation of managed lanes, the demand on these lanes need to be accurately estimated. Among different approaches for predicting this demand, the four-step demand forecasting process is most common. Managed lane demand is usually estimated at the assignment step. Therefore, the key to reliably estimating the demand is the utilization of effective assignment modeling processes. Managed lanes are particularly effective when the road is functioning at near-capacity. Therefore, capturing variations in demand and network attributes and performance is crucial for their modeling, monitoring and operation. As a result, traditional modeling approaches, such as those used in static traffic assignment of demand forecasting models, fail to correctly predict the managed lane demand and the associated system performance. The present study demonstrates the power of the more advanced modeling approach of dynamic traffic assignment (DTA), as well as the shortcomings of conventional approaches, when used to model managed lanes in congested environments. In addition, the study develops processes to support an effective utilization of DTA to model managed lane operations. Static and dynamic traffic assignments consist of demand, network, and route choice model components that need to be calibrated. These components interact with each other, and an iterative method for calibrating them is needed. In this study, an effective standalone framework that combines static demand estimation and dynamic traffic assignment has been developed to replicate real-world traffic conditions. With advances in traffic surveillance technologies collecting, archiving, and analyzing traffic data is becoming more accessible and affordable. The present study shows how data from multiple sources can be integrated, validated, and best used in different stages of modeling and calibration of managed lanes. Extensive and careful processing of demand, traffic, and toll data, as well as proper definition of performance measures, result in a calibrated and stable model, which closely replicates real-world congestion patterns, and can reasonably respond to perturbations in network and demand properties.
Resumo:
As research into the dynamic characteristics of job performance across time has continued to accumulate, associated implications for performance appraisal have become evident. At present, several studies have demonstrated that systematic trends in job performance across time influence how performance is ultimately judged. However, little research has considered the processes by which the performance trend-performance rating relationship occurs. In the present study, I addressed this gap. Specifically, drawing on attribution theory, I proposed and tested a model whereby the performance trend-performance rating relationship occurs through attributions to ability and effort. The results of this study indicated that attributions to ability, but not effort, mediate the relationship between performance trend and performance ratings and that this relationship depends on attribution-related cues. Implications for performance appraisal research and theory are discussed.