2 resultados para Dual phase (DP) steel

em Digital Commons at Florida International University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

An integrated, dual-phase study design assessed the health and nutritional status and practices of African-American (A-A), Caribbean (A-C), and white non-Hispanic (W-A) women during perimenopause (40–55 years). During Phase I, four focus groups (n = 37) of male and female participants discussed the health and social implications of perimenopause. A conceptual framework for the main study (Phase II) was developed from the focus groups' findings, in concert with the main study's specific aims and objectives. ^ The main study, a cross-sectional survey, quantitatively assessed the health and nutritional status of a convenience sample of 109 women (25 A-A, 31 A-C and 53 W-A), who met specific eligibility criteria. Using seven instruments, sociodemographic, dietary, medical, reproductive health, health practice and anthropometric data were collected. ^ The groups were of comparable age, education, and socioeconomic status (SES). Despite these similarities, statistically significant interethnic nutritional status differences were found. Significantly more total energy and energy from fat were consumed by A-A than W-A and A-C women. Also, significantly more A-A and A-C than W-A women were overweight or obese with android-type weight patterning. ^ Overall, iron and calcium Recommended Dietary Allowances (RDA's) were not met by 35% and 68% of participants, respectively. Iron deficiency anemia was reported by 29% of participants while 33% reported heavier menstrual bleeding. Coupled with suboptimal iron intakes, this is likely to present a serious public health problem. Similarly, increased bone demineralization characteristic of perimenopause, coupled with suboptimal calcium intakes could precipitate another public health problem, osteoporosis. ^ Participants had different expectations about the role of medical care during perimenopause. Significantly more white (57%) than black (38% [A-A and AC]) women sought medical attention for symptoms. Whereas Hormone Replacement Therapy (HRT) was prescribed for 25% of them, only 13% were compliant at enrollment. ^ The trends and statistically significant findings of this study have huge public health policy implications. It is imperative that appropriate policies are formulated to ensure that America's ethnically diverse perimenopausal women have ready access to culturally appropriate care. This would optimize their health outcomes, and enhance their quality of life and productive capacities at this critical juncture of their lives. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The introduction of phase change material fluid and nanofluid in micro-channel heat sink design can significantly increase the cooling capacity of the heat sink because of the unique features of these two kinds of fluids. To better assist the design of a high performance micro-channel heat sink using phase change fluid and nanofluid, the heat transfer enhancement mechanism behind the flow with such fluids must be completely understood. ^ A detailed parametric study is conducted to further investigate the heat transfer enhancement of the phase change material particle suspension flow, by using the two-phase non-thermal-equilibrium model developed by Hao and Tao (2004). The parametric study is conducted under normal conditions with Reynolds numbers of Re = 90–600 and phase change material particle concentrations of ϵp ≤ 0.25, as well as extreme conditions of very low Reynolds numbers (Re < 50) and high phase change material particle concentration (ϵp = 50%–70%) slurry flow. By using the two newly-defined parameters, named effectiveness factor ϵeff and performance index PI, respectively, it is found that there exists an optimal relation between the channel design parameters L and D, particle volume fraction ϵp, Reynolds number Re, and the wall heat flux qw. The influence of the particle volume fraction ϵp, particle size dp, and the particle viscosity μ p, to the phase change material suspension flow, are investigated and discussed. The model was validated by available experimental data. The conclusions will assist designers in making their decisions that relate to the design or selection of a micro-pump suitable for micro or mini scale heat transfer devices. ^ To understand the heat transfer enhancement mechanism of the nanofluid flow from the particle level, the lattice Boltzmann method is used because of its mesoscopic feature and its many numerical advantages. By using a two-component lattice Boltzmann model, the heat transfer enhancement of the nanofluid is analyzed, through incorporating the different forces acting on the nanoparticles to the two-component lattice Boltzmann model. It is found that the nanofluid has better heat transfer enhancement at low Reynolds numbers, and the Brownian motion effect of the nanoparticles will be weakened by the increase of flow speed. ^