16 resultados para Drug Reporting-system
em Digital Commons at Florida International University
Resumo:
Drug targeting is an active area of research and nano-scaled drug delivery systems hold tremendous potential for the treatment of neoplasms. In this study, a novel cyclodextrin (CD)-based nanoparticle drug delivery system has been assembled and characterized for the therapy of folate receptor-positive [FR(+)] cancer. Water-soluble folic acid (FA)-conjugated CD carriers (FACDs) were successfully synthesized and their structures were confirmed by 1D/2D nuclear magnetic resonance (NMR), matrix-assisted laser desorption ionization time-of-flight mass spectrometer (MALDI-TOF-MS), high performance liquid chromatography (HPLC), Fourier transform infrared spectroscopy (FTIR), and circular dichroism. Drug complexes of adamatane (Ada) and cytotoxic doxorubicin (Dox) with FACD were readily obtained by mixed solvent precipitation. The average size of FACD-Ada-Dox was 1.5–2.5 nm. The host-guest association constant Ka was 1,639 M−1 as determined by induced circular dichroism and the hydrophilicity of the FACDs was greatly enhanced compared to unmodified CD. Cellular uptake and FR binding competitive experiments demonstrated an efficient and preferentially targeted delivery of Dox into FR-positive tumor cells and a sustained drug release profile was seen in vitro. The delivery of Dox into FR(+) cancer cells via endocytosis was observed by confocal microscopy and drug uptake of the targeted nanoparticles was 8-fold greater than that of non-targeted drug complexes. Our docking results suggest that FA, FACD and FACD-Ada-Dox could bind human hedgehog interacting protein that contains a FR domain. Mouse cardiomyocytes as well as fibroblast treated with FACD-Ada-Dox had significantly lower levels of reactive oxygen species, with increased content of glutathione and glutathione peroxidase activity, indicating a reduced potential for Dox-induced cardiotoxicity. These results indicate that the targeted drug complex possesses high drug association and sustained drug release properties with good biocompatibility and physiological stability. The novel FA-conjugated β-CD based drug complex might be promising as an anti-tumor treatment for FR(+) cancer.
Resumo:
Nanoparticles are often considered as efficient drug delivery vehicles for precisely dispensing the therapeutic payloads specifically to the diseased sites in the patient’s body, thereby minimizing the toxic side effects of the payloads on the healthy tissue. However, the fundamental physics that underlies the nanoparticles’ intrinsic interaction with the surrounding cells is inadequately elucidated. The ability of the nanoparticles to precisely control the release of its payloads externally (on-demand) without depending on the physiological conditions of the target sites has the potential to enable patient- and disease-specific nanomedicine, also known as Personalized NanoMedicine (PNM). In this dissertation, magneto-electric nanoparticles (MENs) were utilized for the first time to enable important functions, such as (i) field-controlled high-efficacy dissipation-free targeted drug delivery system and on-demand release at the sub-cellular level, (ii) non-invasive energy-efficient stimulation of deep brain tissue at body temperature, and (iii) a high-sensitivity contrasting agent to map the neuronal activity in the brain non-invasively. First, this dissertation specifically focuses on using MENs as energy-efficient and dissipation-free field-controlled nano-vehicle for targeted delivery and on-demand release of a anti-cancer Paclitaxel (Taxol) drug and a anti-HIV AZT 5’-triphosphate (AZTTP) drug from 30-nm MENs (CoFe2O4-BaTiO3) by applying low-energy DC and low-frequency (below 1000 Hz) AC fields to separate the functions of delivery and release, respectively. Second, this dissertation focuses on the use of MENs to non-invasively stimulate the deep brain neuronal activity via application of a low energy and low frequency external magnetic field to activate intrinsic electric dipoles at the cellular level through numerical simulations. Third, this dissertation describes the use of MENs to track the neuronal activities in the brain (non-invasively) using a magnetic resonance and a magnetic nanoparticle imaging by monitoring the changes in the magnetization of the MENs surrounding the neuronal tissue under different states. The potential therapeutic and diagnostic impact of this innovative and novel study is highly significant not only in HIV-AIDS, Cancer, Parkinson’s and Alzheimer’s disease but also in many CNS and other diseases, where the ability to remotely control targeted drug delivery/release, and diagnostics is the key.
Resumo:
Parenteral use of drugs; such as opiates exert immunomodulatory effects and serve as a cofactor in the progression of HIV-1 infection, thereby potentiating HIV related neurotoxicity ultimately leading to progression of NeuroAIDS. Morphine exposure is known to induce apoptosis, down regulate cAMP response element-binding (CREB) expression and decrease in dendritic branching and spine density in cultured cells. Use of neuroprotective agent; brain derived neurotropic factor (BDNF), which protects neurons against these effects, could be of therapeutic benefit in the treatment of opiate addiction. Previous studies have shown that BDNF was not transported through the blood brain barrier (BBB) in-vivo.; and hence it is not effectivein-vivo. Therefore development of a drug delivery system that can cross BBB may have significant therapeutic advantage. In the present study, we hypothesized that magnetically guided nanocarrier may provide a viable approach for targeting BDNF across the BBB. We developed a magnetic nanoparticle (MNP) based carrier bound to BDNF and evaluated its efficacy and ability to transmigrate across the BBB using an in-vitro BBB model. The end point determinations of BDNF that crossed BBB were apoptosis, CREB expression and dendritic spine density measurement. We found that transmigrated BDNF was effective in suppressing the morphine induced apoptosis, inducing CREB expression and restoring the spine density. Our results suggest that the developed nanocarrier will provide a potential therapeutic approach to treat opiate addiction, protect neurotoxicity and synaptic density degeneration.
Resumo:
Despite significant advances in highly active antiretroviral therapy (HAART), the prevalence of neuroAIDS remains high. This is mainly attributed to inability of antiretroviral therapy (ART) to cross the blood–brain barrier (BBB), thus resulting in insufficient drug concentration within the brain. Therefore, development of an active drug targeting system is an attractive strategy to increase the efficacy and delivery of ART to the brain. We report herein development of magnetic azidothymidine 5′-triphosphate (AZTTP) liposomal nanoformulation and its ability to transmigrate across an in vitro BBB model by application of an external magnetic field. We hypothesize that this magnetically guided nanoformulation can transverse the BBB by direct transport or via monocyte-mediated transport. Magnetic AZTTP liposomes were prepared using a mixture of phosphatidyl choline and cholesterol. The average size of prepared liposomes was about 150 nm with maximum drug and magnetite loading efficiency of 54.5% and 45.3%, respectively. Further, magnetic AZTTP liposomes were checked for transmigration across an in vitro BBB model using direct or monocyte-mediated transport by application of an external magnetic field. The results show that apparent permeability of magnetic AZTTP liposomes was 3-fold higher than free AZTTP. Also, the magnetic AZTTP liposomes were efficiently taken up by monocytes and these magnetic monocytes showed enhanced transendothelial migration compared to normal/non-magnetic monocytes in presence of an external magnetic field. Thus, we anticipate that the developed magnetic nanoformulation can be used for targeting active nucleotide analog reverse transcriptase inhibitors to the brain by application of an external magnetic force and thereby eliminate the brain HIV reservoir and help to treat neuroAIDS.
Resumo:
Dropout rates are major issues facing any nation's continued economic and social progress. The seriousness of this issue in the United States is evidenced by the recent legislation of the 2001 No Child Left Behind Act. The purpose of this study was to use the richness of qualitative methodology to analyze inaccuracies in the assignment of withdrawal codes by school administrators in two different disciplinary alternative schools. The primary codes examined were Code 05, any students over the age of 16 who leaves school voluntarily with no intention of returning; Code 15, any PK–12 student who is withdrawn from school due to nonattendance; Code 22, whereabouts unknown; Code 23, no other code can be used to identify the student's reason for leaving school, and Code 26, entering an adult program. ^ The cross-case method was used for this study. The participants were comprised of 19 school personnel and 25 students from two disciplinary alternative schools, designated X and Y, in the Miami-Dade County Public School system, Miami, FL. Data collection procedures included semi-structured interview, observations, field notes, and district documents. With a matrix, these data were analyzed to compare patterns and themes that emerged within both schools. ^ Results indicated that withdrawal codes were assigned inaccurately for two distinct reasons. At School Y, withdrawal codes were inaccurately assigned intentionally to keep the students from returning to a regular school without notification. At School X, withdrawal codes were inaccurately assigned due to lack of ability to properly track students and ascertain the real circumstances for their departure from school. The end result in both cases was that the school systems were not accurately identifying the whereabouts of students. It was recommended that further investigation be conducted to compare the accuracy of reporting dropouts among traditional/regular high schools and disciplinary alternative schools. ^
Resumo:
Cannabis sativa is the most frequently used of all illicit drugs in the United States. Cannabis has been used throughout history for its stems in the production of hemp fiber, for its seed for oil and food, and for its buds and leaves as a psychoactive drug. Short tandem repeats (STRs), were chosen as molecular markers because of their distinct advantages over other genetic methods. STRs are co-dominant, can be standardized such that reproducibility between laboratories can be easily achieved, have a high discrimination power and can be multiplexed. ^ In this study, six STR markers previously described for Cannabis were multiplexed into one reaction. The multiplex reaction was able to individualize 98 Cannabis samples (14 hemp and 84 marijuana, authenticated as originating from 33 of the 50 United States) and detect 29 alleles averaging 4.8 alleles per loci. The data did not relate the samples from the same state to each other. This is the first study to report a single reaction six-plex and apply it to the analysis of almost 100 Cannabis samples of known geographic collection site. ^
Resumo:
Current commercially available mimics contain varying amounts of either the actual explosive/drug or the chemical compound of suspected interest by biological detectors. As a result, there is significant interest in determining the dominant chemical odor signatures of the mimics, often referred to as pseudos, particularly when compared to the genuine contraband material. This dissertation discusses results obtained from the analysis of drug and explosive headspace related to the odor profiles as recognized by trained detection canines. Analysis was performed through the use of headspace solid phase microextraction in conjunction with gas chromatography mass spectrometry (HS-SPME-GC-MS). Upon determination of specific odors, field trials were held using a combination of the target odors with COMPS. Piperonal was shown to be a dominant odor compound in the headspace of some ecstasy samples and a recognizable odor mimic by trained detection canines. It was also shown that detection canines could be imprinted on piperonal COMPS and correctly identify ecstasy samples at a threshold level of approximately 100ng/s. Isosafrole and/or MDP-2-POH show potential as training aid mimics for non-piperonal based MDMA. Acetic acid was shown to be dominant in the headspace of heroin samples and verified as a dominant odor in commercial vinegar samples; however, no common, secondary compound was detected in the headspace of either. Because of the similarities detected within respective explosive classes, several compounds were chosen for explosive mimics. A single based smokeless powder with a detectable level of 2,4-dinitrotoluene, a double based smokeless powder with a detectable level of nitroglycerine, 2-ethyl-1-hexanol, DMNB, ethyl centralite and diphenylamine were shown to be accurate mimics for TNT-based explosives, NG-based explosives, plastic explosives, tagged explosives, and smokeless powders, respectively. The combination of these six odors represents a comprehensive explosive odor kit with positive results for imprint on detection canines. As a proof of concept, the chemical compound PFTBA showed promise as a possible universal, non-target odor compound for comparison and calibration of detection canines and instrumentation. In a comparison study of shape versus vibration odor theory, the detection of d-methyl benzoate and methyl benzoate was explored using canine detectors. While results did not overwhelmingly substantiate either theory, shape odor theory provides a better explanation of the canine and human subject responses.
Resumo:
The purpose of the research is to study the relationship between international drug interdiction policies and domestic politics in fragile democracies, and to demonstrate how international drug control policies and the use of force fit the rhetoric of war, are legitimized by the principles of a just war, but may also cause collateral damage and negative unintended consequences. The method used is a case study of the Dominican Republic. The research has found that international drug control regimes, primarily led by the U.S. and narrowly focused on interdiction, have influenced an increasingly militarized approach to domestic law enforcement in the Dominican Republic. The collateral damage caused by militarized enforcement comes in the form of negative perceptions of citizen security, loss of respect for the rule of law and due process, and low levels of civil society development. The drug war has exposed the need for significant reform of the institutions charged with carrying out enforcement, the police force and the judicial system in particular. The dissertation concludes that the extent of drug trafficking in the Dominican Republic is beyond the scope of domestic reform efforts alone, but that the programs implemented do show some potential for future success. The dissertation also concludes that the framework of warfare is not the most appropriate for the international problems of drug traffic and abuse. A broader, multipronged approach should be considered by world policy makers in order to address all conditions that allow drugs to flourish without infringing upon democratic and civil rights in the process.
Resumo:
Approximately 200 million people, 5% aged 15-64 worldwide are illicit drug or substance abusers (World Drug Report, 2006). Between 2002 and 2005, an average of 8.2% of 12 year olds and older in the Miami, Fort Lauderdale metropolitan areas used illicit drugs (SAMHSA, 2007). Eight percent of pregnant women, aged 15 to 25, were more likely to have used illicit drugs during pregnancy than pregnant women aged 26 to 44. Alcohol use was 9.8% and cigarette use was 18% for pregnant women aged 15 to 44 (SAMHSA, 2005). Approximately a quarter of annual birth defects are attributed to the exposure of drugs or substance abuse in utero (General Accounting Office, 1991). Physical, psychological and emotional challenges may be present for the illicit drug/substance abuse (ID/SA) mother and infant placing them at a disadvantage early in their relationship (Shonkoff & Marshall, 1990). Mothers with low self efficacy have insecurely attached infants (Donovan, Leavitt, & Walsh, 1987). As the ID/SA mother struggles with wanting to be a good parent, education is needed to help her care for her infant. In this experimental study residential rehabilitating ID/SA mothers peer taught infant massage. Massage builds bonding/attachment between mother and infant (Reese & Storm, 2008) and peer teaching is effective because participants have faced similar challenges and speak the same language (Boud, Cohen, & Sampson 2001). Quantitative data were collected using the General Self-Efficacy and Maternal Attachment Inventory-Revised Scale before and after the 4-week intervention program. A reported result of this study was that empowering ID/SA mothers increased their self-efficacy, which in turn allowed the mothers to tackle challenges encountered and created feelings of being a fit mother to their infants. This research contributes to the existing database promoting evidence-based practice in drug rehabilitation centers. Healthcare personnel, such as nurse educators and maternal-child health practitioners, can develop programs in drug rehabilitation centers that cultivate an environment where the ID/SA rehabilitating mothers can peer teach each other, while creating a support system. Using infant massage as a therapeutic tool can develop a healthy infant and nurture a more positive relationship between mother and infant.
Resumo:
Brain is one of the safe sanctuaries for HIV and, in turn, continuously supplies active viruses to the periphery. Additionally, HIV infection in brain results in several mild-to-severe neuro-immunological complications termed neuroAIDS. One-tenth of HIV-infected population is addicted to recreational drugs such as opiates, alcohol, nicotine, marijuana, etc. which share common target-areas in the brain with HIV. Interestingly, intensity of neuropathogenesis is remarkably enhanced due to exposure of recreational drugs during HIV infection. Current treatments to alleviate either the individual or synergistic effects of abusive drugs and HIV on neuronal modulations are less effective at CNS level, basically due to impermeability of therapeutic molecules across blood-brain barrier (BBB). Despite exciting advancement of nanotechnology in drug delivery, existing nanovehicles such as dendrimers, polymers, micelles, etc. suffer from the lack of adequate BBB penetrability before the drugs are engulfed by the reticuloendothelial system cells as well as the uncertainty that if and when the nanocarrier reaches the brain. Therefore, in order to develop a fast, target-specific, safe, and effective approach for brain delivery of anti-addiction, anti-viral and neuroprotective drugs, we exploited the potential of magnetic nanoparticles (MNPs) which, in recent years, has attracted significant importance in biomedical applications. We hypothesize that under the influence of external (non-invasive) magnetic force, MNPs can deliver these drugs across BBB in most effective manner. Accordingly, in this dissertation, I delineated the pharmacokinetics and dynamics of MNPs bound anti-opioid, anti-HIV and neuroprotective drugs for delivery in brain. I have developed a liposome-based novel magnetized nanovehicle which, under the influence of external magnetic forces, can transmigrate and effectively deliver drugs across BBB without compromising its integrity. It is expected that the developed nanoformulations may be of high therapeutic significance for neuroAIDS and for drug addiction as well.
Resumo:
Persistence of HIV-1 reservoirs within the Central Nervous System (CNS) remains a significant challenge to the efficacy of potent anti-HIV-1 drugs. The primary human Brain Microvascular Endothelial Cells (HBMVEC) constitutes the Blood Brain Barrier (BBB) which interferes with anti-HIV drug delivery into the CNS. The ATP binding cassette (ABC) transporters expressed on HBMVEC can efflux HIV-1 protease inhibitors (HPI), enabling the persistence of HIV-1 in CNS. Constitutive low level expression of several ABC-transporters, such as MDR1 (a.k.a. P-gp) and MRPs are documented in HBMVEC. Although it is recognized that inflammatory cytokines and exposure to xenobiotic drug substrates (e.g HPI) can augment the expression of these transporters, it is not known whether concomitant exposure to virus and anti-retroviral drugs can increase drug-efflux functions in HBMVEC. Our in vitro studies showed that exposure of HBMVEC to HIV-1 significantly up-regulates both MDR1 gene expression and protein levels; however, no significant increases in either MRP-1 or MRP-2 were observed. Furthermore, calcein-AM dye-efflux assays using HBMVEC showed that, compared to virus exposure alone, the MDR1 mediated drug-efflux function was significantly induced following concomitant exposure to both HIV-1 and saquinavir (SQV). This increase in MDR1 mediated drug-efflux was further substantiated via increased intracellular retention of radiolabeled [3H-] SQV. The crucial role of MDR1 in 3H-SQV efflux from HBMVEC was further confirmed by using both a MDR1 specific blocker (PSC-833) and MDR1 specific siRNAs. Therefore, MDR1 specific drug-efflux function increases in HBMVEC following co-exposure to HIV-1 and SQV which can reduce the penetration of HPIs into the infected brain reservoirs of HIV-1. A targeted suppression of MDR1 in the BBB may thus provide a novel strategy to suppress residual viral replication in the CNS, by augmenting the therapeutic efficacy of HAART drugs.
Resumo:
Current commercially available mimics contain varying amounts of either the actual explosive/drug or the chemical compound of suspected interest by biological detectors. As a result, there is significant interest in determining the dominant chemical odor signatures of the mimics, often referred to as pseudos, particularly when compared to the genuine contraband material. This dissertation discusses results obtained from the analysis of drug and explosive headspace related to the odor profiles as recognized by trained detection canines. Analysis was performed through the use of headspace solid phase microextraction in conjunction with gas chromatography mass spectrometry (HS-SPME-GC-MS). Upon determination of specific odors, field trials were held using a combination of the target odors with COMPS. Piperonal was shown to be a dominant odor compound in the headspace of some ecstasy samples and a recognizable odor mimic by trained detection canines. It was also shown that detection canines could be imprinted on piperonal COMPS and correctly identify ecstasy samples at a threshold level of approximately 100ng/s. Isosafrole and/or MDP-2-POH show potential as training aid mimics for non-piperonal based MDMA. Acetic acid was shown to be dominant in the headspace of heroin samples and verified as a dominant odor in commercial vinegar samples; however, no common, secondary compound was detected in the headspace of either. Because of the similarities detected within respective explosive classes, several compounds were chosen for explosive mimics. A single based smokeless powder with a detectable level of 2,4-dinitrotoluene, a double based smokeless powder with a detectable level of nitroglycerine, 2-ethyl-1-hexanol, DMNB, ethyl centralite and diphenylamine were shown to be accurate mimics for TNT-based explosives, NG-based explosives, plastic explosives, tagged explosives, and smokeless powders, respectively. The combination of these six odors represents a comprehensive explosive odor kit with positive results for imprint on detection canines. As a proof of concept, the chemical compound PFTBA showed promise as a possible universal, non-target odor compound for comparison and calibration of detection canines and instrumentation. In a comparison study of shape versus vibration odor theory, the detection of d-methyl benzoate and methyl benzoate was explored using canine detectors. While results did not overwhelmingly substantiate either theory, shape odor theory provides a better explanation of the canine and human subject responses.
Resumo:
The purpose of the research is to study the relationship between international drug interdiction policies and domestic politics in fragile democracies, and to demonstrate how international drug control policies and the use of force fit the rhetoric of war, are legitimized by the principles of a just war, but may also cause collateral damage and negative unintended consequences. The method used is a case study of the Dominican Republic. The research has found that international drug control regimes, primarily led by the U.S. and narrowly focused on interdiction, have influenced an increasingly militarized approach to domestic law enforcement in the Dominican Republic. The collateral damage caused by militarized enforcement comes in the form of negative perceptions of citizen security, loss of respect for the rule of law and due process, and low levels of civil society development. The drug war has exposed the need for significant reform of the institutions charged with carrying out enforcement, the police force and the judicial system in particular. The dissertation concludes that the extent of drug trafficking in the Dominican Republic is beyond the scope of domestic reform efforts alone, but that the programs implemented do show some potential for future success. The dissertation also concludes that the framework of warfare is not the most appropriate for the international problems of drug traffic and abuse. A broader, multipronged approach should be considered by world policy makers in order to address all conditions that allow drugs to flourish without infringing upon democratic and civil rights in the process.
Resumo:
Approximately 200 million people, 5% aged 15-64 worldwide are illicit drug or substance abusers (World Drug Report, 2006). Between 2002 and 2005, an average of 8.2% of 12 year olds and older in the Miami, Fort Lauderdale metropolitan areas used illicit drugs (SAMHSA, 2007). Eight percent of pregnant women, aged 15 to 25, were more likely to have used illicit drugs during pregnancy than pregnant women aged 26 to 44. Alcohol use was 9.8% and cigarette use was 18% for pregnant women aged 15 to 44 (SAMHSA, 2005). Approximately a quarter of annual birth defects are attributed to the exposure of drugs or substance abuse in utero (General Accounting Office, 1991). Physical, psychological and emotional challenges may be present for the illicit drug/substance abuse (ID/SA) mother and infant placing them at a disadvantage early in their relationship (Shonkoff & Marshall, 1990). Mothers with low self efficacy have insecurely attached infants (Donovan, Leavitt, & Walsh, 1987). As the ID/SA mother struggles with wanting to be a good parent, education is needed to help her care for her infant. In this experimental study residential rehabilitating ID/SA mothers peer taught infant massage. Massage builds bonding/attachment between mother and infant (Reese & Storm, 2008) and peer teaching is effective because participants have faced similar challenges and speak the same language (Boud, Cohen, & Sampson 2001). Quantitative data were collected using the General Self-Efficacy and Maternal Attachment Inventory-Revised Scale before and after the 4-week intervention program. A reported result of this study was that empowering ID/SA mothers increased their self-efficacy, which in turn allowed the mothers to tackle challenges encountered and created feelings of being a fit mother to their infants. This research contributes to the existing database promoting evidence-based practice in drug rehabilitation centers. Healthcare personnel, such as nurse educators and maternal-child health practitioners, can develop programs in drug rehabilitation centers that cultivate an environment where the ID/SA rehabilitating mothers can peer teach each other, while creating a support system. Using infant massage as a therapeutic tool can develop a healthy infant and nurture a more positive relationship between mother and infant.
Resumo:
A knowledge management tool developed by the GIS Center for to support project reporting tools, project publications, and a project data portal for materials related to the WAWASH Program.