4 resultados para Droplet-vitrification

em Digital Commons at Florida International University


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hazardous radioactive liquid waste is the legacy of more than 50 years of plutonium production associated with the United States' nuclear weapons program. It is estimated that more than 245,000 tons of nitrate wastes are stored at facilities such as the single-shell tanks (SST) at the Hanford Site in the state of Washington, and the Melton Valley storage tanks at Oak Ridge National Laboratory (ORNL) in Tennessee. In order to develop an innovative, new technology for the destruction and immobilization of nitrate-based radioactive liquid waste, the United State Department of Energy (DOE) initiated the research project which resulted in the technology known as the Nitrate to Ammonia and Ceramic (NAC) process. However, inasmuch as the nitrate anion is highly mobile and difficult to immobilize, especially in relatively porous cement-based grout which has been used to date as a method for the immobilization of liquid waste, it presents a major obstacle to environmental clean-up initiatives. Thus, in an effort to contribute to the existing body of knowledge and enhance the efficacy of the NAC process, this research involved the experimental measurement of the rheological and heat transfer behaviors of the NAC product slurry and the determination of the optimal operating parameters for the continuous NAC chemical reaction process. Test results indicate that the NAC product slurry exhibits a typical non-Newtonian flow behavior. Correlation equations for the slurry's rheological properties and heat transfer rate in a pipe flow have been developed; these should prove valuable in the design of a full-scale NAC processing plant. The 20-percent slurry exhibited a typical dilatant (shear thickening) behavior and was in the turbulent flow regime due to its lower viscosity. The 40-percent slurry exhibited a typical pseudoplastic (shear thinning) behavior and remained in the laminar flow regime throughout its experimental range. The reactions were found to be more efficient in the lower temperature range investigated. With respect to leachability, the experimental final NAC ceramic waste form is comparable to the final product of vitrification, the technology chosen by DOE to treat these wastes. As the NAC process has the potential of reducing the volume of nitrate-based radioactive liquid waste by as much as 70 percent, it not only promises to enhance environmental remediation efforts but also effect substantial cost savings. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The development of a new set of frost property measurement techniques to be used in the control of frost growth and defrosting processes in refrigeration systems was investigated. Holographic interferometry and infrared thermometry were used to measure the temperature of the frost-air interface, while a beam element load sensor was used to obtain the weight of a deposited frost layer. The proposed measurement techniques were tested for the cases of natural and forced convection, and the characteristic charts were obtained for a set of operational conditions. ^ An improvement of existing frost growth mathematical models was also investigated. The early stage of frost nucleation was commonly not considered in these models and instead an initial value of layer thickness and porosity was regularly assumed. A nucleation model to obtain the droplet diameter and surface porosity at the end of the early frosting period was developed. The drop-wise early condensation in a cold flat plate under natural convection to a hot (room temperature) and humid air was modeled. A nucleation rate was found, and the relation of heat to mass transfer (Lewis number) was obtained. It was found that the Lewis number was much smaller than unity, which is the standard value usually assumed for most frosting numerical models. The nucleation model was validated against available experimental data for the early nucleation and full growth stages of the frosting process. ^ The combination of frost top temperature and weight variation signals can now be used to control the defrosting timing and the developed early nucleation model can now be used to simulate the entire process of frost growth in any surface material. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Edible oil is an important contaminant in water and wastewater. Oil droplets smaller than 40 μm may remain in effluent as an emulsion and combine with other contaminants in water. Coagulation/flocculation processes are used to remove oil droplets from water and wastewater. By adding a polymer at proper dose, small oil droplets can be flocculated and separated from water. The purpose of this study was to characterize and analyze the morphology of flocs and floc formation in edible oil-water emulsions by using microscopic image analysis techniques. The fractal dimension, concentration of polymer, effect of pH and temperature are investigated and analyzed to develop a fractal model of the flocs. Three types of edible oil (corn, olive, and sunflower oil) at concentrations of 600 ppm (by volume) were used to determine the optimum polymer dosage and effect of pH and temperature. To find the optimum polymer dose, polymer was added to the oil-water emulsions at concentration of 0.5, 1.0, 1.5, 2.0, 3.0 and 3.5 ppm (by volume). The clearest supernatants obtained from flocculation of corn, olive, and sunflower oil were achieved at polymer dosage of 3.0 ppm producing turbidities of 4.52, 12.90, and 13.10 NTU, respectively. This concentration of polymer was subsequently used to study the effect of pH and temperature on flocculation. The effect of pH was studied at pH 5, 7, 9, and 11 at 30°C. Microscopic image analysis was used to investigate the morphology of flocs in terms of fractal dimension, radius of oil droplets trapped in floc, floc size, and histograms of oil droplet distribution. Fractal dimension indicates the density of oil droplets captured in flocs. By comparison of fractal dimensions, pH was found to be one of the most important factors controlling droplet flocculation. Neutral pH or pH 7 showed the highest degree of flocculation, while acidic (pH 5) and basic pH (pH 9 and pH 11) showed low efficiency of flocculation. The fractal dimensions achieved from flocculation of corn, olive, and sunflower oil at pH 7 and temperature 30°C were 1.2763, 1.3592, and 1.4413, respectively. The effect of temperature was explored at temperatures 20°, 30°, and 40°C and pH 7. The results of flocculation of oil at pH 7 and different temperatures revealed that temperature significantly affected flocculation. The fractal dimension of flocs formed in corn, olive and sunflower oil emulsion at pH 7 and temperature 20°, 30°, and 40°C were 1.82, 1.28, 1.29, 1.62, 1.36, 1.42, 1.36, 1.44, and 1.28, respectively. After comparison of fractal dimension, radius of oil droplets captured, and floc length in each oil type, the optimal flocculation temperature was determined to be 30°C. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Insulin signaling is one of the main initiators of adipogenesis, the conversion from pre-adipocyte to adipocyte or lipid droplet. Rab proteins are the master regulator of intracellular trafficking and endosome fusion in endocytosis, making them potential regulators of insulin signaling in adipogenesis. Pre-adipocytes 3T3-Ll cells expressing several Rab5 constructs were used to examine the effect of dehydroleucodine (DhL ), a sesquiterpene lactone isolated from aerial parts of Artemisia douglasiana Besser. The results obtained identify Rab5 deactivation as a key step for adipogenesis by forming signaling endosomes. The addition of DhL significantly inhibited the lipid droplet accumulation in a dose-dependent manner and dramatically attenuated the synthesis of adipogenic transcriptional factors, C/EBPa and PPARy. Activation of AMPKa, Erk and Akt during adipocytic differentiation was not inhibited by treatment with DhL. This data suggest that DhL has an important role in Rab5 dependent adipogenesis by regulating several transcriptional factors including PP ARy expression, which is known to play an essential role during fat formation.