3 resultados para Dlx5 Protein Mouse

em Digital Commons at Florida International University


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gonadal development is an ideal model to study organogenesis because a variety of developmental processes can be studied during the differentiation of the bipotential primordium into testis or ovary. To better understand this process, Representational Difference Analysis of cDNA was used to identify genes that are differentially expressed in mouse gonads at 13.5 days post-coitus. The analysis led to the identification of three testis specific genes and a sequence that was only expressed in the ovary. The male genes identified: renin, Col9a3, and a novel gene termed tescalcin had patterns of expression that suggested a role in testis determination. ^ Studies of the tescalcin gene revealed that it is organized into eight exons and seven introns. The gene was located at 64 cM in mouse chromosome 5, where it spans approximately 35 Kb. Three mRNA variants resulting from alternative splicing of intron 5 were identified in mouse tissues. Gel mobility shift assays demonstrated that Sp1 and Sp3 from Y-1, msc-1, and MIN-6 cells nuclear extracts bind the GC-boxes within the tescalcin proximal promoter. Bisulfite sequencing analysis of tescalcin CpG island revealed that it is differentially methylated in male and female mouse embryonic gonads, and that hypermethylation of this region represses expression of tescalcin in the β-TC3 cell line. ^ The major tescalcin mRNA encodes a protein with 214 amino acids that contains a consensus EF-hand Ca2+-binding domain and an N-myristoylation motif. The amino acid sequence of tescalcin is highly conserved among various species, and it showed the highest homology with calcineurin B homologous proteins 1 and 2, and calcineurin B. Western blot analysis using antibodies generated against the tescalcin protein confirmed its presence in specific mouse tissues and cell lines. Immunohistochemical analysis of mouse embryos confirmed the pattern of expression of tescalcin mRNA in fetal testis. Using pull-down assays, glyceraidehydes-3-phosphate dehydrogenase was identified as an interacting and potential functional partner of tescalcin. ^ The identification and characterization of tescalcin as a novel embryonic testicular marker will contribute to the elucidation of the genetic pathways involved in testis development and likely to the understanding of pathological conditions such as sex reversal and infertility. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In multigenic diseases, disorders where mutations in multiple genes affect the expressivity of the disease, genetic interactions play a major role in prevalence and phenotypic severity. While studying the genetic interactions between Pax3 and EdnrB in the melanocyte lineage, a new phenotype was noted in 80% of Pax3 mutants that we believe to be a novel murine model for hydrocephalus. Hydrocephalus, an accumulation of cerebrospinal fluid in the cranial cavity due to obstruction of flow in and out of the cavity, is one of the most common birth defects surpassing Down syndrome. Characteristic to hydrocephalus is a "domed" head appearance, expansion of the ventricles of the brain, and loss of neurons with hyperproliferation of glial cell types all three of which were seen in the mutant mice. The phenotype also consisted of craniofacial deformities coupled with skeletal defects including, but not limited to kyphosis, lordosis, and an apparent shortening of the some limbs. For the cellular analysis of the hydrocephalus phenotype, brains were removed and stained with two antibodies: Glial Fibrillary Acidic Protein (GFAP) and Neurofilament (NF), which are astrocyte- and neuron- specific respectively. A higher number of cells expressing GF AP and a lower number of cells expressing NF were seen in the mutant brain, when compared to control. For skeletal deformity analysis, affected mice skeletons were stained with Alizarin Red and Alcian Blue showing no apparent difference in ossification. Future genetic analysis of these mutant mice has the potential to identify novel gene modifiers involved in the promotion of this particular phenotype.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The previously identified RAP6 (Rab5 activating protein 6) was associated with plasma membrane mediated endocytosis and contains a Rab5 guanine nucleotide exchange factor (GEF) domain. RAP6 has been shown to act a Ras activating protein (GAP) domain. The identification of RAP6 and its crucial role in both receptors mediated endocytosis and fluid phase endocytosis presents the opportunity to investigate its role in murine embryonic development and in the adult brain. To confirm and characterize the presence of RAP6 during embryonic development and in the adult brain, the current study examined the expression of both the RGD and the Vps9 domains of RAP6 through in situ hybridization. We present an extensive evaluation of the expression for both RAP6 domains through in situ hybridization of 12.5 and 14.5 weeks old C67 mouse embryos and adult C67 mouse brain. The current study confirms the presence of both RAP6 domains and presents an extensive evaluation its expression in embryonic development and the adult brain. These data together support the role of RAP6 in receptor mediated endocytosis and fluid phase endocytosis relevant active during murine embryonic development and adult brain processes.