7 resultados para Discrete Time Domain
em Digital Commons at Florida International University
Resumo:
In this study, discrete time one-factor models of the term structure of interest rates and their application to the pricing of interest rate contingent claims are examined theoretically and empirically. The first chapter provides a discussion of the issues involved in the pricing of interest rate contingent claims and a description of the Ho and Lee (1986), Maloney and Byrne (1989), and Black, Derman, and Toy (1990) discrete time models. In the second chapter, a general discrete time model of the term structure from which the Ho and Lee, Maloney and Byrne, and Black, Derman, and Toy models can all be obtained is presented. The general model also provides for the specification of an additional model, the ExtendedMB model. The third chapter illustrates the application of the discrete time models to the pricing of a variety of interest rate contingent claims. In the final chapter, the performance of the Ho and Lee, Black, Derman, and Toy, and ExtendedMB models in the pricing of Eurodollar futures options is investigated empirically. The results indicate that the Black, Derman, and Toy and ExtendedMB models outperform the Ho and Lee model. Little difference in the performance of the Black, Derman, and Toy and ExtendedMB models is detected. ^
Resumo:
The current mobile networks don't offer sufficient data rates to support multimedia intensive applications in development for multifunctional mobile devices. Ultra wideband (UWB) wireless technology is being considered as the solution to overcome data rate bottlenecks in the current mobile networks. UWB is able to achieve such high data transmission rates because it transmits data over a very large chunk of the frequency spectrum. As currently approved by the U.S. Federal Communication Commission it utilizes 7.5 GHz of spectrum between 3.1 GHz and 10.6 GHz. ^ Successful transmission and reception of information data using UWB wireless technology in mobile devices, requires an antenna that has linear phase, low dispersion and a voltage standing wave ratio (VSWR) ≤ 2 throughout the entire frequency band. Compatibility with an integrated circuit requires an unobtrusive and electrically small design. The previous techniques that have been used to optimize the performance of UWB wireless systems, involve proper design of source pulses for optimal UWB performance. The goal of this work is directed towards the designing of antennas for personal communication devices, with optimal UWB bandwidth performance. Several techniques are proposed for optimal UWB bandwidth performance of the UWB antenna designs in this Ph.D. dissertation. ^ This Ph.D. dissertation presents novel UWB antenna designs for personal communication devices that have been characterized and optimized using the finite difference time domain (FDTD) technique. The antenna designs reported in this research are physically compact, planar for low profile use, with sufficient impedance bandwidth (>20%), antenna input impedance of 50-Ω, and an omni-directional (±1.5 dB) radiation pattern in the operating bandwidth. ^
Resumo:
Antenna design is an iterative process in which structures are analyzed and changed to comply with certain performance parameters required. The classic approach starts with analyzing a "known" structure, obtaining the value of its performance parameter and changing this structure until the "target" value is achieved. This process relies on having an initial structure, which follows some known or "intuitive" patterns already familiar to the designer. The purpose of this research was to develop a method of designing UWB antennas. What is new in this proposal is that the design process is reversed: the designer will start with the target performance parameter and obtain a structure as the result of the design process. This method provided a new way to replicate and optimize existing performance parameters. The base of the method was the use of a Genetic Algorithm (GA) adapted to the format of the chromosome that will be evaluated by the Electromagnetic (EM) solver. For the electromagnetic study we used XFDTD™ program, based in the Finite-Difference Time-Domain technique. The programming portion of the method was created under the MatLab environment, which serves as the interface for converting chromosomes, file formats and transferring of data between the XFDTD™ and GA. A high level of customization had to be written into the code to work with the specific files generated by the XFDTD™ program. Two types of cost functions were evaluated; the first one seeking broadband performance within the UWB band, and the second one searching for curve replication of a reference geometry. The performance of the method was evaluated considering the speed provided by the computer resources used. Balance between accuracy, data file size and speed of execution was achieved by defining parameters in the GA code as well as changing the internal parameters of the XFDTD™ projects. The results showed that the GA produced geometries that were analyzed by the XFDTD™ program and changed following the search criteria until reaching the target value of the cost function. Results also showed how the parameters can change the search criteria and influence the running of the code to provide a variety of geometries.
Resumo:
A two-dimensional, 2D, finite-difference time-domain (FDTD) method is used to analyze two different models of multi-conductor transmission lines (MTL). The first model is a two-conductor MTL and the second is a threeconductor MTL. Apart from the MTL's, a three-dimensional, 3D, FDTD method is used to analyze a three-patch microstrip parasitic array. While the MTL analysis is entirely in time-domain, the microstrip parasitic array is a study of scattering parameter Sn in the frequency-domain. The results clearly indicate that FDTD is an efficient and accurate tool to model and analyze multiconductor transmission line as well as microstrip antennas and arrays.
Resumo:
During the past decade, there has been a dramatic increase by postsecondary institutions in providing academic programs and course offerings in a multitude of formats and venues (Biemiller, 2009; Kucsera & Zimmaro, 2010; Lang, 2009; Mangan, 2008). Strategies pertaining to reapportionment of course-delivery seat time have been a major facet of these institutional initiatives; most notably, within many open-door 2-year colleges. Often, these enrollment-management decisions are driven by the desire to increase market-share, optimize the usage of finite facility capacity, and contain costs, especially during these economically turbulent times. So, while enrollments have surged to the point where nearly one in three 18-to-24 year-old U.S. undergraduates are community college students (Pew Research Center, 2009), graduation rates, on average, still remain distressingly low (Complete College America, 2011). Among the learning-theory constructs related to seat-time reapportionment efforts is the cognitive phenomenon commonly referred to as the spacing effect, the degree to which learning is enhanced by a series of shorter, separated sessions as opposed to fewer, more massed episodes. This ex post facto study explored whether seat time in a postsecondary developmental-level algebra course is significantly related to: course success; course-enrollment persistence; and, longitudinally, the time to successfully complete a general-education-level mathematics course. Hierarchical logistic regression and discrete-time survival analysis were used to perform a multi-level, multivariable analysis of a student cohort (N = 3,284) enrolled at a large, multi-campus, urban community college. The subjects were retrospectively tracked over a 2-year longitudinal period. The study found that students in long seat-time classes tended to withdraw earlier and more often than did their peers in short seat-time classes (p < .05). Additionally, a model comprised of nine statistically significant covariates (all with p-values less than .01) was constructed. However, no longitudinal seat-time group differences were detected nor was there sufficient statistical evidence to conclude that seat time was predictive of developmental-level course success. A principal aim of this study was to demonstrate—to educational leaders, researchers, and institutional-research/business-intelligence professionals—the advantages and computational practicability of survival analysis, an underused but more powerful way to investigate changes in students over time.
Resumo:
Communication has become an essential function in our civilization. With the increasing demand for communication channels, it is now necessary to find ways to optimize the use of their bandwidth. One way to achieve this is by transforming the information before it is transmitted. This transformation can be performed by several techniques. One of the newest of these techniques is the use of wavelets. Wavelet transformation refers to the act of breaking down a signal into components called details and trends by using small waveforms that have a zero average in the time domain. After this transformation the data can be compressed by discarding the details, transmitting the trends. In the receiving end, the trends are used to reconstruct the image. In this work, the wavelet used for the transformation of an image will be selected from a library of available bases. The accuracy of the reconstruction, after the details are discarded, is dependent on the wavelets chosen from the wavelet basis library. The system developed in this thesis takes a 2-D image and decomposes it using a wavelet bank. A digital signal processor is used to achieve near real-time performance in this transformation task. A contribution of this thesis project is the development of DSP-based test bed for the future development of new real-time wavelet transformation algorithms.
Resumo:
During the past decade, there has been a dramatic increase by postsecondary institutions in providing academic programs and course offerings in a multitude of formats and venues (Biemiller, 2009; Kucsera & Zimmaro, 2010; Lang, 2009; Mangan, 2008). Strategies pertaining to reapportionment of course-delivery seat time have been a major facet of these institutional initiatives; most notably, within many open-door 2-year colleges. Often, these enrollment-management decisions are driven by the desire to increase market-share, optimize the usage of finite facility capacity, and contain costs, especially during these economically turbulent times. So, while enrollments have surged to the point where nearly one in three 18-to-24 year-old U.S. undergraduates are community college students (Pew Research Center, 2009), graduation rates, on average, still remain distressingly low (Complete College America, 2011). Among the learning-theory constructs related to seat-time reapportionment efforts is the cognitive phenomenon commonly referred to as the spacing effect, the degree to which learning is enhanced by a series of shorter, separated sessions as opposed to fewer, more massed episodes. This ex post facto study explored whether seat time in a postsecondary developmental-level algebra course is significantly related to: course success; course-enrollment persistence; and, longitudinally, the time to successfully complete a general-education-level mathematics course. Hierarchical logistic regression and discrete-time survival analysis were used to perform a multi-level, multivariable analysis of a student cohort (N = 3,284) enrolled at a large, multi-campus, urban community college. The subjects were retrospectively tracked over a 2-year longitudinal period. The study found that students in long seat-time classes tended to withdraw earlier and more often than did their peers in short seat-time classes (p < .05). Additionally, a model comprised of nine statistically significant covariates (all with p-values less than .01) was constructed. However, no longitudinal seat-time group differences were detected nor was there sufficient statistical evidence to conclude that seat time was predictive of developmental-level course success. A principal aim of this study was to demonstrate—to educational leaders, researchers, and institutional-research/business-intelligence professionals—the advantages and computational practicability of survival analysis, an underused but more powerful way to investigate changes in students over time.