3 resultados para Direct ethanol fuel cells

em Digital Commons at Florida International University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of the work is to develop a fuel delivery system for potable direct methanol fuel cell. Currently, one of the most fundamental limitations of direct methanol fuel cells is that the fuel supplied to the anode of the DMFC must be a very dilute aqueous methanol solution (usually 0.5∼1.5 M). If a DMFC is filled with a dilute aqueous methanol solution, the fuel cell operation time per refuel would be very short, which would considerably diminish the advantage of a DMFC over a conventional battery. To overcome this difficulty, a complex fuel delivery system based on the modern micro system technology was proposed by the author. The proposed fuel delivery system would include micro-pumps, a methanol sensor, and a control unit. The fuel delivery system adds considerable costs to the fuel cell system and consume considerable amount of electricity from the fuel cell, which in turn significantly reduces the net power output of the fuel cell. As a result, the DMFC would have tremendous difficulty to compete with the conventional battery technology in terms of costs and power output. ^ This work presents a novel passive fuel delivery system for direct methanol fuel cells. In this particular system, a methanol fuel and an aqueous methanol solution are stored separately in two containers and a wick is disposed between the two containers in a siphon fashion, with the container of the aqueous methanol solution communicating with the anode of the DMFC. Methanol is siphoned from the methanol container to the aqueous solution container in-situ when the methanol in the aqueous methanol solution is consumed during the operation of the fuel cell. Through a proper selection of the wick and the containers, the methanol concentration near the anode of the DMFC could be maintained within a preferable range. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Miniature direct methanol fuel cells (DMFCs) are promising micro power sources for portable appliction. Low temperature cofired ceramic (LTCC), a competitive technology for current MEMS based fabrication, provides cost-effective mass manufacturing route for miniature DMFCs. Porous silver tape is adapted as electrodes to replace the traditional porous carbon electrodes due to its compatibility to LTCC processing and other electrochemical advantages. Electrochemical evaluation of silver under DMFCs operating conditions demonstrated that silver is a good electrode for DMFCs because of its reasonable corrosion resistance, low passivating current, and enhanced catalytic effect. Two catalyst loading methods (cofiring and postfiring) of the platinum and ruthenium catalysts are evaluated for LTCC based processing. The electrochemical analysis exhibits that the cofired path out-performs the postfiring path both at the anode and cathode. The reason is the formation of high surface area precipitated whiskers. Self-constraint sintering is utilized to overcome the difficulties of the large difference of coefficient of thermal expansion (CTE) between silver and LTCC (Dupont 951) tape during cofiring. The graphite sheet employed as a cavity fugitive insert guarantees cavity dimension conservation. Finally, performance of the membrane electrode assembly (MEA) with the porous silver electrode in the regular graphite electrode based cell and the integrated cofired cell is measured under passive fuel feeding condition. The MEA of the regular cell performs better as the electrode porosity and temperature increased. The power density of 10 mWcm-2 was obtained at ambient conditions with 1M methanol and it increased to 16 mWcm -2 at 50°C from an open circuit voltage of 0.58V. For the integrated prototype cell, the best performance, which depends on the balance methanol crossover and mass transfer at different temperatures and methanol concentrations, reaches 1.13 mWcm-2 at 2M methanol solution at ambient pressure. The porous media pore structure increases the methanol crossover resistance. As temperature increased to 60°C, the device increases to 2.14 mWcm-2.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A two-phase three-dimensional computational model of an intermediate temperature (120--190°C) proton exchange membrane (PEM) fuel cell is presented. This represents the first attempt to model PEM fuel cells employing intermediate temperature membranes, in this case, phosphoric acid doped polybenzimidazole (PBI). To date, mathematical modeling of PEM fuel cells has been restricted to low temperature operation, especially to those employing Nafion ® membranes; while research on PBI as an intermediate temperature membrane has been solely at the experimental level. This work is an advancement in the state of the art of both these fields of research. With a growing trend toward higher temperature operation of PEM fuel cells, mathematical modeling of such systems is necessary to help hasten the development of the technology and highlight areas where research should be focused.^ This mathematical model accounted for all the major transport and polarization processes occurring inside the fuel cell, including the two phase phenomenon of gas dissolution in the polymer electrolyte. Results were presented for polarization performance, flux distributions, concentration variations in both the gaseous and aqueous phases, and temperature variations for various heat management strategies. The model predictions matched well with published experimental data, and were self-consistent.^ The major finding of this research was that, due to the transport limitations imposed by the use of phosphoric acid as a doping agent, namely low solubility and diffusivity of dissolved gases and anion adsorption onto catalyst sites, the catalyst utilization is very low (∼1--2%). Significant cost savings were predicted with the use of advanced catalyst deposition techniques that would greatly reduce the eventual thickness of the catalyst layer, and subsequently improve catalyst utilization. The model also predicted that an increase in power output in the order of 50% is expected if alternative doping agents to phosphoric acid can be found, which afford better transport properties of dissolved gases, reduced anion adsorption onto catalyst sites, and which maintain stability and conductive properties at elevated temperatures.^