2 resultados para Differences-in-Differences method
em Digital Commons at Florida International University
Resumo:
The objective of this study was to develop a GIS-based multi-class index overlay model to determine areas susceptible to inland flooding during extreme precipitation events in Broward County, Florida. Data layers used in the method include Airborne Laser Terrain Mapper (ALTM) elevation data, excess precipitation depth determined through performing a Soil Conservation Service (SCS) Curve Number (CN) analysis, and the slope of the terrain. The method includes a calibration procedure that uses "weights and scores" criteria obtained from Hurricane Irene (1999) records, a reported 100-year precipitation event, Doppler radar data and documented flooding locations. Results are displayed in maps of Eastern Broward County depicting types of flooding scenarios for a 100-year, 24-hour storm based on the soil saturation conditions. As expected the results of the multi-class index overlay analysis showed that an increase for the potential of inland flooding could be expected when a higher antecedent moisture condition is experienced. The proposed method proves to have some potential as a predictive tool for flooding susceptibility based on a relatively simple approach.
Resumo:
Query processing is a commonly performed procedure and a vital and integral part of information processing. It is therefore important and necessary for information processing applications to continuously improve the accessibility of data sources as well as the ability to perform queries on those data sources. ^ It is well known that the relational database model and the Structured Query Language (SQL) are currently the most popular tools to implement and query databases. However, a certain level of expertise is needed to use SQL and to access relational databases. This study presents a semantic modeling approach that enables the average user to access and query existing relational databases without the concern of the database's structure or technicalities. This method includes an algorithm to represent relational database schemas in a more semantically rich way. The result of which is a semantic view of the relational database. The user performs queries using an adapted version of SQL, namely Semantic SQL. This method substantially reduces the size and complexity of queries. Additionally, it shortens the database application development cycle and improves maintenance and reliability by reducing the size of application programs. Furthermore, a Semantic Wrapper tool illustrating the semantic wrapping method is presented. ^ I further extend the use of this semantic wrapping method to heterogeneous database management. Relational, object-oriented databases and the Internet data sources are considered to be part of the heterogeneous database environment. Semantic schemas resulting from the algorithm presented in the method were employed to describe the structure of these data sources in a uniform way. Semantic SQL was utilized to query various data sources. As a result, this method provides users with the ability to access and perform queries on heterogeneous database systems in a more innate way. ^