5 resultados para Diet of Worms (1521)

em Digital Commons at Florida International University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Peruvian coast is one the best examples of cross-ecosystem food web exchanges, in which resources from one of the richest marine ecosystems subsidize consumers in one of the driest deserts on Earth. Marine subsidies are resources that originate in the marine ecosystem, and that contribute to increase the density of consumers in the recipient ecosystem. I examined the effects of marine subsidies on animal populations in the Peruvian coastal desert. ^ I combined several approaches to study the linkages between marine resources and terrestrial consumers, such as surveying the spatial distribution and estimating the relative abundance of terrestrial consumers, studying the diet of geckos and lizards through stomach content analyses, and examining the desert food web with carbon and nitrogen stable isotope analyses. ^ I found that the distribution and diet of desert consumers were tightly coupled to the availability of marine subsidies. I revealed linkages along two pathways of nutrient fluxes: tidal action that washes ashore macroalgae and cadavers of marine organisms, and animal transport in places where pinnipeds and seabirds congregate for reproduction. In the first pathway, intertidal algivivores made marine resources available to terrestrial consumers by moving between the intertidal and supratidal zone. The relative contribution of terrestrial and algal carbon sources varied among terrestrial consumers, because scorpions assimilated a lower proportion of energy from macroalgae than did geckos and solifuges. In the second pathway, I found that pinniped colonies influenced the diet of desert consumers, and contributed to support large populations of lizards and geckos. By combining field observations, and stomach and stable isotope analyses, I constructed a simplified food web for a large sea lion colony, showing the number of trophic levels that originate from pinniped-derived nutrients. ^ My study demonstrates the enormous importance of marine resources for the diet of desert consumers. The near absence of rainfall along the Peruvian coast promotes an extreme dependence of terrestrial consumers on marine resources, and causes permanent food web effects that are affected by temporal variability in marine productivity, rather then temporal patterns of desert plant growth. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Body size is a fundamental structural characteristic of organisms, determining critical life history and physiological traits, and influencing population dynamics, community structure, and ecosystem function. For my dissertation, I focused on effects of body size on habitat use and diet of important coastal fish predators, as well as their influence on faunal communities in Bahamian wetlands. First, using acoustic telemetry and stable isotope analysis, I identified high variability in movement patterns and habitat use among individuals within a gray snapper (Lutjanus griseus) and schoolmaster snapper (L. apodus) population. This intrapopulation variation was not explained by body size, but by individual behavior in habitat use. Isotope values differed between individuals that moved further distances and individuals that stayed close to their home sites, suggesting movement differences were related to specific patterns of foraging behavior. Subsequently, while investigating diet of schoolmaster snapper over a two-year period using stomach content and stable isotope analyses, I also found intrapopulation diet variation, mostly explained by differences in size class, individual behavior and temporal variability. I then developed a hypothesis-testing framework examining intrapopulation niche variation between size classes using stable isotopes. This framework can serve as baseline to categorize taxonomic or functional groupings into specific niche shift scenarios, as well as to help elucidate underlying mechanisms causing niche shifts in certain size classes. Finally, I examined the effect of different-sized fish predators on epifaunal community structure in shallow seagrass beds using exclusion experiments at two spatial scales. Overall, I found that predator effects were rather weak, with predator size and spatial scale having no impact on the community. Yet, I also found some evidence of strong interactions on particular common snapper prey. As Bahamian wetlands are increasingly threatened by human activities (e.g., overexploitation, habitat degradation), an enhanced knowledge of the ecology of organisms inhabiting these systems is crucial for developing appropriate conservation and management strategies. My dissertation research contributed to this effort by providing critical information about the resource use of important Bahamian fish predators, as well as their effect on faunal seagrass communities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Top predators are best known for their ability to affect their communities through inflicting mortality on prey and inducing behavioral modifications (e.g. risk effects). Recent scientific evidence suggests that predators may have additional roles in bottom-up processes such as transporting materials within and across habitat boundaries. The Florida Coastal Everglades (FCE) is an “upside-down” oligotrophic estuary where productivity decreases from the mouth of the estuary to freshwater marshes. Research in the FCE suggest that predators can act as mobile links between disparate habitats and can potentially affect nutrient and biogeochemical dynamics through localized behaviors (e.g. American alligators and juvenile bull sharks). To date, little is known about bottlenose dolphins (Tursiops truncatus) in the FCE beyond broad-scale patterns of abundance. Because they are highly mobile mammals commonly found in coastal waters, bottlenose dolphins are an interesting case study for investigating the influence of ecology on the evolution of local adaptations. Within this influence lies the potential for investigation of the related roles those adaptations play in coastal ecosystems due to their high metabolic rates, movement capabilities, and tendency to display specialized foraging behaviors. Stable isotope analysis of biopsy samples were used to investigate habitat use, trophic interactions, and patterns of individual specialization in bottlenose dolphins to gain functional insights into ecosystem dynamics. δ13 C isotopic values are used to differentiate the relative importance of a food web to the diet of an organism, while δ15 N values are used to evaluate the relative trophic position of an organism. Dolphin δ13 C isotopic values seem to suggest that dolphins are foraging within single ecosystems and may not be moving nutrients across ecosystem boundaries while their δ15 N isotopic values appear to be of a top predator, at a similar level to bull sharks and alligators in FCE. Further research is necessary to provide vital insight into the large predators’ role in affecting the evolution of local adaptations. Conducting this research should also provide information for predicting how future changes occurring due to restoration dynamics (see CERP: evergladesplan.org) and climate change will affect the ecological roles of these animals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Top predators are best known for their ability to affect their communities through inflicting mortality on prey and inducing behavioral modifications (e.g. risk effects). Recent scientific evidence suggests that predators may have additional roles in bottom-up processes such as transporting materials within and across habitat boundaries. The Florida Coastal Everglades (FCE) is an “upside-down” oligotrophic estuary where productivity decreases from the mouth of the estuary to freshwater marshes. Research in the FCE suggest that predators can act as mobile links between disparate habitats and can potentially affect nutrient and biogeochemical dynamics through localized behaviors (e.g. American alligators and juvenile bull sharks). To date, little is known about bottlenose dolphins (Tursiops truncatus) in the FCE beyond broad-scale patterns of abundance. Because they are highly mobile mammals commonly found in coastal waters, bottlenose dolphins are an interesting case study for investigating the influence of ecology on the evolution of local adaptations. Within this influence lies the potential for investigation of the related roles those adaptations play in coastal ecosystems due to their high metabolic rates, movement capabilities, and tendency to display specialized foraging behaviors. Stable isotope analysis of biopsy samples were used to investigate habitat use, trophic interactions, and patterns of individual specialization in bottlenose dolphins to gain functional insights into ecosystem dynamics. δ13 C isotopic values are used to differentiate the relative importance of a food web to the diet of an organism, while δ15 N values are used to evaluate the relative trophic position of an organism. Dolphin δ13 C isotopic values seem to suggest that dolphins are foraging within single ecosystems and may not be moving nutrients across ecosystem boundaries while their δ15 N isotopic values appear to be of a top predator, at a similar level to bull sharks and alligators in FCE. Further research is necessary to provide vital insight into the large predators’ role in affecting the evolution of local adaptations. Conducting this research should also provide information for predicting how future changes occurring due to restoration dynamics (see CERP: evergladesplan.org) and climate change will affect the ecological roles of these animals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Peruvian coast is one the best examples of cross-ecosystem food web exchanges, in which resources from one of the richest marine ecosystems subsidize consumers in one of the driest deserts on Earth. Marine subsidies are resources that originate in the marine ecosystem, and that contribute to increase the density of consumers in the recipient ecosystem. I examined the effects of marine subsidies on animal populations in the Peruvian coastal desert. I combined several approaches to study the linkages between marine resources and terrestrial consumers, such as surveying the spatial distribution and estimating the relative abundance of terrestrial consumers, studying the diet of geckos and lizards through stomach content analyses, and examining the desert food web with carbon and nitrogen stable isotope analyses. I found that the distribution and diet of desert consumers were tightly coupled to the availability of marine subsidies. I revealed linkages along two pathways of nutrient fluxes: tidal action that washes ashore macroalgae and cadavers of marine organisms, and animal transport in places where pinnipeds and seabirds congregate for reproduction. In the first pathway, intertidal algivivores made marine resources available to terrestrial consumers by moving between the intertidal and supratidal zone. The relative contribution of terrestrial and algal carbon sources varied among terrestrial consumers, because scorpions assimilated a lower proportion of energy from macroalgae than did geckos and solifuges. In the second pathway, I found that pinniped colonies influenced the diet of desert consumers, and contributed to support large populations of lizards and geckos. By combining field observations, and stomach and stable isotope analyses, I constructed a simplified food web for a large sea lion colony, showing the number of trophic levels that originate from pinniped-derived nutrients. My study demonstrates the enormous importance of marine resources for the diet of desert consumers. The near absence of rainfall along the Peruvian coast promotes an extreme dependence of terrestrial consumers on marine resources, and causes permanent food web effects that are affected by temporal variability in marine productivity, rather then temporal patterns of desert plant growth.