38 resultados para Dictatorship of Primo de Rivera
em Digital Commons at Florida International University
Resumo:
This dissertation analyzes four twenty-first-century Catalan novels which present the complex positions occupied by mothers in the last seven decades. Its conceptual framework posits motherhood as both a changing social construction and a political institution in a constant state of flux. In Inma Monsó´s Todo un carácter (2001), Eva Piquer´s Una victoria diferente (2002), Carme Riera´s La mitad del alma (2004), and Najat El Hachmi´s El último patriarca (2008) motherhood is explored as a metaphorical act, a gender-constructing experience, as well as the locus of expression with regard to gender and power relations. During the dictatorship of Francisco Franco (1939–1975), the majority of women were excluded from public spaces, and forced to stay home to care for their husbands and children. Furthermore, the state criminalized abortion, made contraception and divorce illegal, and promoted an ideal of femininity based on silence, sacrifice, and self-denial. The political changes of the late 1970s allowed women greater personal autonomy, and many women writers began to challenge stereotypical views of women’s social roles. Yet in the 70s and 80s, the narratives of Esther Tusquets, Ana María Moix, and Montserrat Roig represent the mother as a repressive figure whom the daughter must reject in order to liberate herself and regain her voice. It is not until the 90s when the novelists Mercedes Abad, Maruja Torres, Carme Riera, Imma Monsó, Eva Piquer, and María Barbal rehumanize the mother figure, recovering their matrilineal heritage. However, far from suggesting a unified trend in representations of motherhood in Catalan fiction, the diverse points of view of the novels under discussion here reveal that differences in attitudes among women authors about mother-daughter conflict are far from resolved. The theoretical background for this dissertation draws mainly on the work of Adrienne Rich, Nancy Chodorow, and Julia Kristeva. It includes psychoanalytic studies as well as sociologically based essays by Anna López Puig, Amparo Acereda, Jacqueline Cruz, Barbara Zecchi, Ángeles de la Concha, and Raquel Osborne, among others.
Resumo:
Brazil’s growing status as a potential world power cannot obscure the characteristics of its other reality: that of a country with vast inequalities and high crime rates. The Comando Vermelho, the most prominent organized crime syndicate in Rio de Janeiro, besieges the beauty and charm that attracts tourists to this city. The CV arose not only as a product of the political dictatorship of the seventies, but also of the disenfranchised urban poor crammed into Rio’s favela slums. Today, the CV presents a powerful challenge to the State’s control of parts of Rio territory. As Brazil’s soft power projection grows, it is seriously challenged by its capacity to eliminate organized crime. Economic growth is not sufficient to destroy a deeply embedded organization like the CV. In fact, Brazil’s success may yet further retrench the CV’s activities. Culpability for organized crime cannot be merely limited to the gangs, but must also be shared among the willing consumers, among whom can be found educated and elite members of society, as well as the impoverished and desperate. The Brazilian government needs a top-down response addressing the schism between rich and poor. However, Brazil’s citizens must also take responsibility and forge a bottom-up response to the drug- and corruption-riddled elements of its most respected members of society. Brazil must target reform across public health, housing, education and above all, law enforcement. Without such changes, Brazil will remain a two-track democracy. Rio’s wealthy will still be able to revel in the city’s beauty albeit from behind armored cars and fortified mansions, while the city’s poor will yield – either as victims or perpetrators – to the desperate measures of organized crime.
Resumo:
The search-experience-credence framework from economics of information, the human-environment relations models from environmental psychology, and the consumer evaluation process from services marketing provide a conceptual basis for testing the model of "Pre-purchase Information Utilization in Service Physical Environments." The model addresses the effects of informational signs, as a dimension of the service physical environment, on consumers' perceptions (perceived veracity and perceived performance risk), emotions (pleasure) and behavior (willingness to buy). The informational signs provide attribute quality information (search and experience) through non-personal sources of information (simulated word-of-mouth and non-personal advocate sources).^ This dissertation examines: (1) the hypothesized relationships addressed in the model of "Pre-purchase Information Utilization in Service Physical Environments" among informational signs, perceived veracity, perceived performance risk, pleasure, and willingness to buy, and (2) the effects of attribute quality information and sources of information on consumers' perceived veracity and perceived performance risk.^ This research is the first in-depth study about the role and effects of information in service physical environments. Using a 2 x 2 between subjects experimental research procedure, undergraduate students were exposed to the informational signs in a simulated service physical environment. The service physical environments were simulated through color photographic slides.^ The results of the study suggest that: (1) the relationship between informational signs and willingness to buy is mediated by perceived veracity, perceived performance risk and pleasure, (2) experience attribute information shows higher perceived veracity and lower perceived performance risk when compared to search attribute information, and (3) information provided through simulated word-of-mouth shows higher perceived veracity and lower perceived performance risk when compared to information provided through non-personal advocate sources. ^
Resumo:
Mangrove forests are highly productive but globally threatened coastal ecosystems, whose role in the carbon budget of the coastal zone has long been debated. Here we provide a comprehensive synthesis of the available data on carbon fluxes in mangrove ecosystems. A reassessment of global mangrove primary production from the literature results in a conservative estimate of ∼218 ± 72 Tg C a−1. When using the best available estimates of various carbon sinks (organic carbon export, sediment burial, and mineralization), it appears that >50% of the carbon fixed by mangrove vegetation is unaccounted for. This unaccounted carbon sink is conservatively estimated at ∼112 ± 85 Tg C a−1, equivalent in magnitude to ∼30–40% of the global riverine organic carbon input to the coastal zone. Our analysis suggests that mineralization is severely underestimated, and that the majority of carbon export from mangroves to adjacent waters occurs as dissolved inorganic carbon (DIC). CO2 efflux from sediments and creek waters and tidal export of DIC appear to be the major sinks. These processes are quantitatively comparable in magnitude to the unaccounted carbon sink in current budgets, but are not yet adequately constrained with the limited published data available so far.
Resumo:
Mexico harbors more than 10% of the planet’s endemic species. However, the integrity and biodiversity of many ecosystems is experiencing rapid transformation under the influence of a wide array of human and natural disturbances. In order to disentangle the effects of human and natural disturbance regimes at different spatial and temporal scales, we selected six terrestrial (temperate montane forests, montane cloud forests, tropical rain forests, tropical semi-deciduous forests, tropical dry forests, and deserts) and four aquatic (coral reefs, mangrove forests, kelp forests and saline lakes) ecosystems. We used semiquantitative statistical methods to assess (1) the most important agents of disturbance affecting the ecosystems, (2) the vulnerability of each ecosystem to anthropogenic and natural disturbance, and (3) the differences in ecosystem disturbance regimes and their resilience. Our analysis indicates a significant variation in ecological responses, recovery capacity, and resilience among ecosystems. The constant and widespread presence of human impacts on both terrestrial and aquatic ecosystems is reflected either in reduced area coverage for most systems, or reduced productivity and biodiversity, particularly in the case of fragile ecosystems (e.g., rain forests, coral reefs). In all cases, the interaction between historical human impacts and episodic high intensity natural disturbance (e.g., hurricanes, fires) has triggered a reduction in species diversity and induced significant changes in habitat distribution or species dominance. The lack of monitoring programs assessing before/after effects of major disturbances in Mexico is one of the major limitations to quantifying the commonalities and differences of disturbance effects on ecosystem properties.
Resumo:
The distribution of mangrove biomass and forest structure along Shark River estuary in the Florida Coastal Everglades (FCE) has been correlated with elevated total phosphorus concentration in soils thought to be associated with storm events. The passage of Hurricane Wilma across Shark River estuary in 2005 allowed us to quantify sediment deposition and nutrient inputs in FCE mangrove forests associated with this storm event and to evaluate whether these pulsing events are sufficient to regulate nutrient biogeochemistry in mangrove forests of south Florida. We sampled the spatial pattern of sediment deposits and their chemical properties in mangrove forests along FCE sites in December 2005 and October 2006. The thickness (0.5 to 4.5 cm) of hurricane sediment deposits decreased with distance inland at each site. Bulk density, organic matter content, total nitrogen (N) and phosphorus (P) concentrations, and inorganic and organic P pools of hurricane sediment deposits differed from surface (0–10 cm) mangrove soils at each site. Vertical accretion resulting from this hurricane event was eight to 17 times greater than the annual accretion rate (0.30± 0.03 cm year−1) averaged over the last 50 years. Total P inputs from storm-derived sediments were equivalent to twice the average surface soil nutrient P density (0.19 mg cm−3). In contrast, total N inputs contributed 0.8 times the average soil nutrient N density (2.8 mg cm−3). Allochthonous mineral inputs from Hurricane Wilma represent a significant source of sediment to soil vertical accretion rates and nutrient resources in mangroves of southwestern Everglades. The gradient in total P deposition to mangrove soils from west to east direction across the FCE associated with this storm event is particularly significant to forest development due to the P-limited condition of this carbonate ecosystem. This source of P may be an important adaptation of mangrove forests in the Caribbean region to projected impacts of sea-level rise.
Resumo:
Patterns of mangrove vegetation in two distinct basins of Florida Coastal Everglades (FCE), Shark River estuary and Taylor River Slough, represent unique opportunities to test hypotheses that root dynamics respond to gradients of resources, regulators, and hydroperiod. We propose that soil total phosphorus (P) gradients in these two coastal basins of FCE cause specific patterns in belowground biomass allocation and net primary productivity that facilitate nutrient acquisition, but also minimize stress from regulators and hydroperiod in flooded soil conditions. Shark River basin has higher P and tidal hydrology with riverine mangroves, in contrast to scrub mangroves of Taylor basin with more permanent flooding and lower P across the coastal landscape. Belowground biomass (0–90 cm) of mangrove sites in Shark River and Taylor River basins ranged from 2317 to 4673 g m-2, with the highest contribution (62–85%) of roots in the shallow root zone (0–45 cm) compared to the deeper root zone (45–90 cm). Total root productivity did not vary significantly among sites and ranged from 407 to 643 g m-2 y-1. Root production in the shallow root zone accounted for 57–78% of total production. Root turnover rates ranged from 0.04 to 0.60 y-1 and consistently decreased as the root size class distribution increased from fine to coarse roots, indicating differences in root longevity. Fine root biomass was negatively correlated with soil P density and frequency of inundation, whereas fine root turnover decreased with increasing soil N:P ratios. Lower P availability in Taylor River basin relative to Shark River basin, along with higher regulator and hydroperiod stress, confirms our hypothesis that interactions of stress from resource limitation and long duration of hydroperiod account for higher fine root biomass along with lower fine root production and turnover. Because fine root production and organic matter accumulation are the primary processes controlling soil formation and accretion in scrub mangrove forests, root dynamics in the P-limited carbonate ecosystem of south Florida have a major controlling role as to how mangroves respond to future impacts of sealevel rise.
Resumo:
The goal of mangrove restoration projects should be to improve community structure and ecosystem function of degraded coastal landscapes. This requires the ability to forecast how mangrove structure and function will respond to prescribed changes in site conditions including hydrology, topography, and geophysical energies. There are global, regional, and local factors that can explain gradients of regulators (e.g., salinity, sulfides), resources (nutrients, light, water), and hydroperiod (frequency, duration of flooding) that collectively account for stressors that result in diverse patterns of mangrove properties across a variety of environmental settings. Simulation models of hydrology, nutrient biogeochemistry, and vegetation dynamics have been developed to forecast patterns in mangroves in the Florida Coastal Everglades. These models provide insight to mangrove response to specific restoration alternatives, testing causal mechanisms of system degradation. We propose that these models can also assist in selecting performance measures for monitoring programs that evaluate project effectiveness. This selection process in turn improves model development and calibration for forecasting mangrove response to restoration alternatives. Hydrologic performance measures include soil regulators, particularly soil salinity, surface topography of mangrove landscape, and hydroperiod, including both the frequency and duration of flooding. Estuarine performance measures should include salinity of the bay, tidal amplitude, and conditions of fresh water discharge (included in the salinity value). The most important performance measures from the mangrove biogeochemistry model should include soil resources (bulk density, total nitrogen, and phosphorus) and soil accretion. Mangrove ecology performance measures should include forest dimension analysis (transects and/or plots), sapling recruitment, leaf area index, and faunal relationships. Estuarine ecology performance measures should include the habitat function of mangroves, which can be evaluated with growth rate of key species, habitat suitability analysis, isotope abundance of indicator species, and bird census. The list of performance measures can be modified according to the model output that is used to define the scientific goals during the restoration planning process that reflect specific goals of the project.
Resumo:
We investigated the combined effects of salinity and hydroperiod on seedlings of Rhizophora mangle and Laguncularia racemosa grown under experimental conditions of monoculture and mixed culture by using a simulated tidal system. The objective was to test hypotheses relative to species interactions to either tidal or permanent flooding at salinities of 10 or 40 g/l. Four-month-old seedlings were experimentally manipulated under these environmental conditions in two types of species interactions: (1) seedlings of the same species were grown separately in containers from September 2000 to August 2001 to evaluate intraspecific response and (2) seedlings of each species were mixed in containers to evaluate interspecific, competitive responses from August 2002 to April 2003. Overall, L. racemosa was strongly sensitive to treatment combinations while R. mangle showed little effect. Most plant responses of L. racemosa were affected by both salinity and hydroperiod, with hydroperiod inducing more effects than salinity. Compared to R. mangle, L. racemosa in all treatment combinations had higher relative growth rate, leaf area ratio, specific leaf area, stem elongation, total length of branches, net primary production, and stem height. Rhizophora mangle had higher biomass allocation to roots. Species growth differentiation was more pronounced at low salinity, with few species differences at high salinity under permanent flooding. These results suggest that under low to mild stress by hydroperiod and salinity, L. racemosa exhibits responses that favor its competitive dominance over R. mangle. This advantage, however, is strongly reduced as stress from salinity and hydroperiod increase.
Resumo:
We present here a 4-year dataset (2001–2004) on the spatial and temporal patterns of aboveground net primary production (ANPP) by dominant primary producers (sawgrass, periphyton, mangroves, and seagrasses) along two transects in the oligotrophic Florida Everglades coastal landscape. The 17 sites of the Florida Coastal Everglades Long Term Ecological Research (FCE LTER) program are located along fresh-estuarine gradients in Shark River Slough (SRS) and Taylor River/C-111/Florida Bay (TS/Ph) basins that drain the western and southern Everglades, respectively. Within the SRS basin, sawgrass and periphyton ANPP did not differ significantly among sites but mangrove ANPP was highest at the site nearest the Gulf of Mexico. In the southern Everglades transect, there was a productivity peak in sawgrass and periphyton at the upper estuarine ecotone within Taylor River but no trends were observed in the C-111 Basin for either primary producer. Over the 4 years, average sawgrass ANPP in both basins ranged from 255 to 606 g m−2 year−1. Average periphyton productivity at SRS and TS/Ph was 17–68 g C m−2 year−1 and 342–10371 g C m−2 year−1, respectively. Mangrove productivity ranged from 340 g m−2 year−1 at Taylor River to 2208 g m−2 year−1 at the lower estuarine Shark River site. Average Thalassia testudinum productivity ranged from 91 to 396 g m−2 year−1 and was 4-fold greater at the site nearest the Gulf of Mexico than in eastern Florida Bay. There were no differences in periphyton productivity at Florida Bay. Interannual comparisons revealed no significant differences within each primary producer at either SRS or TS/Ph with the exception of sawgrass at SRS and the C−111 Basin. Future research will address difficulties in assessing and comparing ANPP of different primary producers along gradients as well as the significance of belowground production to the total productivity of this ecosystem.
Resumo:
The authors summarize the main findings of the Florida Coastal Everglades Long-Term Ecological Research (FCE-LTER) program in the EMER, within the context of the Comprehensive Everglades Restoration Plan (CERP), to understand how regional processes, mediated by water flow, control population and ecosystem dynamics across the EMER landscape. Tree canopies with maximum height <3 m cover 49% of the EMER, particularly in the SE region. These scrub/dwarf mangroves are the result of a combination of low soil phosphorus (P < 59 μg P g dw−1) in the calcareous marl substrate and long hydroperiod. Phosphorus limits the EMER and its freshwater watersheds due to the lack of terrigenous sediment input and the phosphorus-limited nature of the freshwater Everglades. Reduced freshwater delivery over the past 50 years, combined with Everglades compartmentalization and a 10 cm rise in coastal sea level, has led to the landward transgression (1.5 km in 54 years) of the mangrove ecotone. Seasonal variation in freshwater input strongly controls the temporal variation of nitrogen and P exports (99%) from the Everglades to Florida Bay. Rapid changes in nutrient availability and vegetation distribution during the last 50 years show that future ecosystem restoration actions and land use decisions can exert a major influence, similar to sea level rise over the short term, on nutrient cycling and wetland productivity in the EMER.
Resumo:
We describe trajectories of selected ecological indicators used as performance measures to evaluate the success of a mangrove rehabilitation project in the Ciénaga Grande de Santa Marta (CGSM) Delta-Lagoon complex, Colombia, as result of freshwater diversions initiated in 1995. There is a significant reduction in soil and water column salinity in all sampling stations following the hydraulic reconnection of the Clarín and Aguas Negras channels to the Magdalena River. Soil intersticial water salinity (depth: 0.5 m) (7 stations) and water column salinity (0.5 m) (10 stations) values declined significantly (soil <30 g kg-1; water <10 g kg-1) from 1994 to 2000. During 1994 soil interstitial water salinity ranged from 40 g kg-1 (Rinconada) to 100 g kg-1 (KM 13), while water column salinity fluctuated between 25-35 g kg-1 for most of the sampling stations. This salinity reduction increased mangrove forest regeneration promoting a net gain of 99 km2 from 1995 to 1999. The high precipitation recorded in 1995 and 1999 caused by El Niño-La Niña (ENSO), coinciding with the channels rehabilitation, influenced rapid mangrove regeneration. The lack of economic investment in the maintenance of the diversion structures from 2001 to 2004 caused a salinity increase affecting negatively already restored vegetation. A sustainable effort from the international community and the Colombian government is needed to maintain the strategic social and economic benefits reached until 2000 in the CGSM region.
Patterns of nutrient exchange in a riverine mangrove forest in the Shark River Estuary, Florida, USA
Resumo:
This study aimed to evaluate tidal and seasonal variations in concentrations and fluxes of nitrogen (NH4 +, NO2+NO3, total nitrogen) and phosphorus (soluble reactive phosphorus, total phosphorus) in a riverine mangrove forest using the flume technique during the dry (May, December 2003) and rainy (October 2003) seasons in the Shark River Estuary, Florida. Tidal water temperatures during the sampling period were on average 29.4 (± 0.4) oC in May and October declining to 20 oC (± 4) in December. Salinity values remained constant in May (28 ± 0.12 PSU), whereas salinity in October and December ranged from 6‒21 PSU and 9‒25 PSU, respectively. Nitrate + nitrite (N+N) and NH4+ concentrations ranged from 0.0 to 3.5 μM and from 0 to 4.8 μM throughout the study period, respectively. Mean TN concentrations in October and December were 39 (±0.8) μM and 37 (±1.5) μM, respectively. SRP and N+N concentrations in the flume increased with higher frequency in flooding tides. TP concentrations ranged between 0.2‒2.9 μM with higher concentrations in the dry season than in the rainy season. Mean concentrations were <1. 5 μM during the sampling period in October (0.75 ± 0.02) and December (0.76 ± 0.01), and were relatively constant in both upstream and downstream locations of the flume. Water residence time in the flume (25 m2) was relatively short for any nutrient exchange to occur between the water column and the forest floor. However, the distinct seasonality in nutrient concentrations in the flume and adjacent tidal creek indicate that the Gulf of Mexico is the main source of SRP and N+N into the mangrove forest.
Resumo:
Compared to phosphorus (P), nitrogen (N) has received little attention across the Everglades landscape. Despite this lack of attention, N plays important roles in many Everglades systems, including being a significant pollutant in Florida Bay and the Gulf of Mexico, the limiting nutrient in highly P-impacted areas, and an important substrate for microbial metabolism. Storage and transport of N throughout the Everglades is dominated by organic forms, including peat soils and dissolved organic N in the water column. In general, N sources are highest in the northern areas; however, atmospheric deposition and active N2 fixation by the periphyton components are a significant N source throughout most systems. Many of the processes involved in the wetland N cycle remain unmeasured for most of the Everglades systems. In particular, the lack of in situ rates for N2 fixation and denitrification prevent the construction of system-level budgets, especially for the Southern mangrove systems where N export into Florida Bay is critical. There is also the potential for several novel N processes (e.g., Anammox) with an as yet undetermined importance for nitrogen cycling and function of the Everglades ecosystem. Phosphorus loading alters the N cycle by stimulating organic N mineralization with resulting flux of ammonium and DON, and at elevated P concentrations, by increasing rates of N2 fixation and N assimilation. Restoration of hydrology has a potential for significantly impacting N cycling in the Everglades both in terms of affecting N transport, but also by altering aerobic-anaerobic transitions at the soil-water interface or in areas with seasonal drawdowns (e.g., marl prairies). Based on the authors’ understanding of N processes, much more research is necessary to adequately predict potential impacts from hydrologic restoration, as well as the function of Everglades systems as sinks, sources, and transformers of N in the South Florida landscape.