4 resultados para Deoxyxylulose-5-phosphate synthase

em Digital Commons at Florida International University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The juvenile hormones (JHs) are sesquiterpenoid compounds that play a central role in insect reproduction, development and behavior. They are synthesized and secreted by a pair of small endocrine glands, the corpora allata (CA), which are intimately connected to the brain. The enzymes involved in the biosynthesis of JH are attractive targets for the control of mosquito populations. This dissertation is a comprehensive functional study of five Aedes aegypti CA enzymes, HMG-CoA synthase (AaHMGS), mevalonate kinase (AaMK), phosphomevalonate kinase (AaPMK), farnesyl diphosphate synthase (AaFPPS) and farnesyl pyrophosphate phosphatase (AaFPPase). The enzyme AaHMGS catalyzes the condensation of acetoacetyl-CoA and acetyl-CoA to produce HMG-CoA. The enzyme does not require any co-factor, although its activity is enhanced by addition of Mg2+. The enzyme AaMK is a class I mevalonate kinase that catalyzes the ATP-dependent phosphorylation of mevalonic acid to form mevalonate 5-phosphate. Activity of AaMK is inhibited by isoprenoids. The enzyme AaPMK catalyzes the cation-dependent reversible reaction of phosphomevalonate and ATP to form diphosphate mevalonate and ADP. The enzyme AaFPPS catalyzes the condensation of isopentenyl diphosphate (IPP) and dimethylallyl pyrophosphate (DMAPP) to form geranyl diphosphate (GPP) and farnesyl pyrophosphate (FPP). The enzyme AaFPPS shows an unusual product regulation mechanism, with chain length final product of 10 or 15 C depending on the metal cofactor present. The enzymes AaFPPase-1 and AaFPPase-2 efficiently hydrolyze FPP into farnesol, although RNAi experiments demonstrate that only AaFPPase-1 is involved in the catalysis of FPP into FOL in the CA of A. aegypti. This dissertation also explored the inhibition of the activity of some of the JH biosynthesis enzymes as tools for insect control. We described the effect of N-acetyl-S-geranylgeranyl-L-cysteine as a potent inhibitor of AaFPPase 1 and AaFPPase-2. In addition, inhibitors of AaMK and AaHMGS were also investigated using purified recombinant proteins. The present study provides an important contribution to the characterization of recombinant proteins, the analysis of enzyme kinetics and inhibition constants, as well as the understanding of the importance of these five enzymes in the control of JH biosynthesis rates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study investigates the potential release of from carbonate aquifers exposed to seawater intrusion. Adsorption and desorption of in the presence of deionized water (DIW) and seawater were conducted on a large block of Pleistocene age limestone to simulate the effects of seawater intrusion into a coastal carbonate aquifer at the laboratory scale. The limestone showed strong adsorption of in DIW, while adsorption was significantly less in the presence of seawater. Dissolution of CaCO3 was found to prevent adsorption at salinities less than 30 psu. Adsorption of was limited at higher salinities (30–33 psu), due to competition with ions for adsorption sites. At a salinity3 precipitated. Concentrations of between 2 and 5 μmol/L were released by desorption when the limestone was exposed to seawater. The results of this study suggest that as seawater intrudes into an originally freshwater coastal aquifer, adsorbed may be released into the groundwater. Consequently, adsorbed is expected to be released from coastal carbonate aquifers world-wide as sea level continues to rise exposing more of the freshwater aquifer to seawater.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Glycogen Synthase Kinase 3 (GSK3), a serine/threonine kinase initially characterized in the context of glycogen metabolism, has been repeatedly realized as a multitasking protein that can regulate numerous cellular events in both metazoa and protozoa. I recently found GSK3 plays a role in regulating chemotaxis, a guided cell movement in response to an external chemical gradient, in one of the best studied model systems for chemotaxis - Dictyostelium discoideum. ^ It was initially found that comparing to wild type cells, gsk3 - cells showed aberrant chemotaxis with a significant decrease in both speed and chemotactic indices. In Dictyostelium, phosphatidylinositol 3,4,5-triphosphate (PIP3) signaling is one of the best characterized pathways that regulate chemotaxis. Molecular analysis uncovered that gsk3- cells suffer from high basal level of PIP3, the product of PI3K. Upon chemoattractant cAMP stimulation, wild type cells displayed a transient increase in the level of PIP3. In contrast, gsk3- cells exhibited neither significant increase nor adaptation. On the other hand, no aberrant dynamic of phosphatase and tensin homolog (PTEN), which antagonizes PI3K function, was observed. Upon membrane localization of PI3K, PI3K become activated by Ras, which will in turn further facilitate membrane localization of PI3K in an F-Actin dependent manner. The gsk3- cells treated with F-Actin inhibitor Latrunculin-A showed no significant difference in the PIP3 level. ^ I also showed GSK3 affected the phosphorylation level of the localization domain of PI3K1 (PI3K1-LD). PI3K1-LD proteins from gsk3- cells displayed less phosphorylation on serine residues compared to that from wild type cells. When the potential GSK3 phosphorylation sites of PI3K1-LD were substituted with aspartic acids (Phosphomimetic substitution), its membrane localization was suppressed in gsk3- cells. When these serine residues of PI3K1-LD were substituted with alanine, aberrantly high level of membrane localization of the PI3K1-LD was monitored in wild type cells. Wild type, phosphomimetic, and alanine substitution of PI3K1-LD fused with GFP proteins also displayed identical localization behavior as suggested by the cell fraction studies. Lastly, I identified that all three potential GSK3 phosphorylation sites on PI3K1-LD could be phosphorylated in vitro by GSK3.^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Glycogen Synthase Kinase 3 (GSK3), a serine/threonine kinase initially characterized in the context of glycogen metabolism, has been repeatedly realized as a multitasking protein that can regulate numerous cellular events in both metazoa and protozoa. I recently found GSK3 plays a role in regulating chemotaxis, a guided cell movement in response to an external chemical gradient, in one of the best studied model systems for chemotaxis - Dictyostelium discoideum. It was initially found that comparing to wild type cells, gsk3- cells showed aberrant chemotaxis with a significant decrease in both speed and chemotactic indices. In Dictyostelium, phosphatidylinositol 3,4,5-triphosphate (PIP3) signaling is one of the best characterized pathways that regulate chemotaxis. Molecular analysis uncovered that gsk3- cells suffer from high basal level of PIP3, the product of PI3K. Upon chemoattractant cAMP stimulation, wild type cells displayed a transient increase in the level of PIP3. In contrast, gsk3- cells exhibited neither significant increase nor adaptation. On the other hand, no aberrant dynamic of phosphatase and tensin homolog (PTEN), which antagonizes PI3K function, was observed. Upon membrane localization of PI3K, PI3K become activated by Ras, which will in turn further facilitate membrane localization of PI3K in an F-Actin dependent manner. The gsk3- cells treated with F-Actin inhibitor Latrunculin-A showed no significant difference in the PIP3 level. I also showed GSK3 affected the phosphorylation level of the localization domain of PI3K1 (PI3K1-LD). PI3K1-LD proteins from gsk3- cells displayed less phosphorylation on serine residues compared to that from wild type cells. When the potential GSK3 phosphorylation sites of PI3K1-LD were substituted with aspartic acids (Phosphomimetic substitution), its membrane localization was suppressed in gsk3- cells. When these serine residues of PI3K1-LD were substituted with alanine, aberrantly high level of membrane localization of the PI3K1-LD was monitored in wild type cells. Wild type, phosphomimetic, and alanine substitution of PI3K1-LD fused with GFP proteins also displayed identical localization behavior as suggested by the cell fraction studies. Lastly, I identified that all three potential GSK3 phosphorylation sites on PI3K1-LD could be phosphorylated in vitro by GSK3.