3 resultados para Dendritic cells, Friend-Retrovirus, Nanoparticles, Immunotherapeutic applications,
em Digital Commons at Florida International University
Resumo:
Cocaine and other drugs of abuse increase HIV-induced immunopathogenesis; and neurobiological mechanisms of cocaine addiction implicate a key role for microRNAs (miRNAs), single-stranded non-coding RNAs that regulate gene expression and defend against viruses. In fact, HIV defends against miRNAs by actively suppressing the expression of polycistronic miRNA cluster miRNA-17/92, which encodes miRNAs including miR-20a. IFN-g production by natural killer cells is regulated by miR-155 and this miRNA is also critical to dendritic cell (DC) maturation. However, the impact of cocaine on miR-155 expression and subsequent HIV replication is unknown. We examined the impact of cocaine on two miRNAs, miR-20a and miR-155, which are integral to HIV replication, and immune activation. Using miRNA isolation and analysis, RNA interference, quantitative real time PCR, and reporter assays we explored the effects of cocaine on miR-155 and miR-20 in the context of HIV infection. Here we demonstrate using monocyte-derived dendritic cells (MDCCs) that cocaine significantly inhibited miR-155 and miR-20a expression in a dose dependent manner. Cocaine and HIV synergized to lower miR-155 and miR-20a in MDDCs by 90%. Cocaine treatment elevated LTR-mediated transcription and PU.1 levels in MDCCs. But in context of HIV infection, PU.1 was reduced in MDDCs regardless of cocaine presence. Cocaine increased DC-SIGN and and decreased CD83 expression in MDDC, respectively. Overall, we show that cocaine inhibited miR-155 and prevented maturation of MDDCs; potentially, resulting in increased susceptibility to HIV-1. Our findings could lead to the development of novel miRNA-based therapeutic strategies targeting HIV infected cocaine abusers.
Resumo:
Alcohol is known to induce inflammation in the presence of the human immunodeficiency virus (HIV). In our previous studies, we revealed that alcohol induces cannabinoid receptors which play a role in the regulation of inflammatory cytokine production in monocyte-derived dendritic cells (MDDC). However, the ability of alcohol to alter MDDC function during HIV infection has not been clearly elucidated yet. To study the potential impact of alcohol on HIV-infected MDDC (confirmed by p24 ELISA), monocytes were isolated from commercially available buffy coats and cultured for 7 days with GM-CSF and IL-4. MDDC were infected with HIV- 1Ba-L and treated with different concentrations of alcohol (0.1% band 0.2%) for 4-7 days. MDDC phenotype, endocytosis, cytokine production, and ability to transmit HIV to T cells were analyzed. Uninfected CD4+ T cells were co-cultured for 7 days with either infected/treated MDDC or the supernatants from infected/treated MDDC. Inflammatory cytokine arrays were performed using supernatants from HIV-infected MDDC treated with alcohol. Results showed that HIV positive MDDC treated with alcohol had higher levels of infection compared to untreated HIV positive controls. CD4+ T cells exposed to HIV-infected MDDC acquired 100-fold higher levels of p24 compared to CD4+ T cells exposed to only supernatants. CD4+ T cells exposed to HIV-infected and alcohol-treated MDDC had higher levels of infection compared to controls. Cytokine array data show dysregulation of cytokine production by alcohol. In addition, MDDC phenotype and endocytic capacity were altered in the alcohol treated MDDC. Our results indicate a crucial role of MDDC in HIV transmission to T cells and provide insights into the inflammatory role alcohol exerts on dendritic cell function in the context of HIV infection. Supported by the National Institute on Alcohol Abuse and Alcoholism award R00AA021264, the National Institute on Drug Abuse award R01DA034547, and the Institute on NeuroImmune Pharmacology at FIU.
Resumo:
Nanoparticles are often considered as efficient drug delivery vehicles for precisely dispensing the therapeutic payloads specifically to the diseased sites in the patient’s body, thereby minimizing the toxic side effects of the payloads on the healthy tissue. However, the fundamental physics that underlies the nanoparticles’ intrinsic interaction with the surrounding cells is inadequately elucidated. The ability of the nanoparticles to precisely control the release of its payloads externally (on-demand) without depending on the physiological conditions of the target sites has the potential to enable patient- and disease-specific nanomedicine, also known as Personalized NanoMedicine (PNM). In this dissertation, magneto-electric nanoparticles (MENs) were utilized for the first time to enable important functions, such as (i) field-controlled high-efficacy dissipation-free targeted drug delivery system and on-demand release at the sub-cellular level, (ii) non-invasive energy-efficient stimulation of deep brain tissue at body temperature, and (iii) a high-sensitivity contrasting agent to map the neuronal activity in the brain non-invasively. First, this dissertation specifically focuses on using MENs as energy-efficient and dissipation-free field-controlled nano-vehicle for targeted delivery and on-demand release of a anti-cancer Paclitaxel (Taxol) drug and a anti-HIV AZT 5’-triphosphate (AZTTP) drug from 30-nm MENs (CoFe2O4-BaTiO3) by applying low-energy DC and low-frequency (below 1000 Hz) AC fields to separate the functions of delivery and release, respectively. Second, this dissertation focuses on the use of MENs to non-invasively stimulate the deep brain neuronal activity via application of a low energy and low frequency external magnetic field to activate intrinsic electric dipoles at the cellular level through numerical simulations. Third, this dissertation describes the use of MENs to track the neuronal activities in the brain (non-invasively) using a magnetic resonance and a magnetic nanoparticle imaging by monitoring the changes in the magnetization of the MENs surrounding the neuronal tissue under different states. The potential therapeutic and diagnostic impact of this innovative and novel study is highly significant not only in HIV-AIDS, Cancer, Parkinson’s and Alzheimer’s disease but also in many CNS and other diseases, where the ability to remotely control targeted drug delivery/release, and diagnostics is the key.