4 resultados para Defoliation
em Digital Commons at Florida International University
Resumo:
Small potted trees of Spondias purpurea were monitored to determine the costs and controls of flowering and fruiting. The effect of photoperiod, extremes in moisture and temperature, and defoliation were examined. The carbon exchange rates of the leaves, shoots and fruits were determined. Light response curves and diurnal levels were also investigated. $\sp{13}$Carbon labeling was used to determine which plant parts are carbon sinks. Photoperiod induces dormancy and bud activity. Extremes in soil moisture and temperature induce leaf fall. Flowers, fruits, and roots are carbon sinks. The results were used to develop a phenological model with latitude, soil moisture, and air temperature as variables. ^
Resumo:
Eddy covariance (EC) estimates of carbon dioxide (CO2) fluxes and energy balance are examined to investigate the functional responses of a mature mangrove forest to a disturbance generated by Hurricane Wilma on October 24, 2005 in the Florida Everglades. At the EC site, high winds from the hurricane caused nearly 100% defoliation in the upper canopy and widespread tree mortality. Soil temperatures down to -50 cm increased, and air temperature lapse rates within the forest canopy switched from statically stable to statically unstable conditions following the disturbance. Unstable conditions allowed more efficient transport of water vapor and CO2 from the surface up to the upper canopy layer. Significant increases in latent heat fluxes (LE) and nighttime net ecosystem exchange (NEE) were also observed and sensible heat fluxes (H) as a proportion of net radiation decreased significantly in response to the disturbance. Many of these impacts persisted through much of the study period through 2009. However, local albedo and MODIS (Moderate Resolution Imaging Spectro-radiometer) data (the Enhanced Vegetation Index) indicated a substantial proportion of active leaf area recovered before the EC measurements began 1 year after the storm. Observed changes in the vertical distribution and the degree of clumping in newly emerged leaves may have affected the energy balance. Direct comparisons of daytime NEE values from before the storm and after our measurements resumed did not show substantial or consistent differences that could be attributed to the disturbance. Regression analyses on seasonal time scales were required to differentiate the storm's impact on monthly average daytime NEE from the changes caused by interannual variability in other environmental drivers. The effects of the storm were apparent on annual time scales, and CO2 uptake remained approximately 250 g C m-2 yr-1 lower in 2009 compared to the average annual values measured in 2004-2005. Dry season CO2 uptake was relatively more affected by the disturbance than wet season values. Complex leaf regeneration dynamics on damaged trees during ecosystem recovery are hypothesized to lead to the variable dry versus wet season impacts on daytime NEE. In contrast, nighttime CO2 release (i.e., nighttime respiration) was consistently and significantly greater, possibly as a result of the enhanced decomposition of litter and coarse woody debris generated by the storm, and this effect was most apparent in the wet seasons compared to the dry seasons. The largest pre- and post-storm differences in NEE coincided roughly with the delayed peak in cumulative mortality of stems in 2007-2008. Across the hurricane-impacted region, cumulative tree mortality rates were also closely correlated with declines in peat surface elevation. Mangrove forest-atmosphere interactions are interpreted with respect to the damage and recovery of stand dynamics and soil accretion processes following the hurricane.
Resumo:
Angadenia berteroi is a tropical perennial subshrub of the pine rocklands with large yellow flowers that set very few fruits. My dissertation seeks to elucidate the factors that affect the reproductive fitness of Angadenia berteroi a native species of the south Florida pine rocklands. I provide novel information on the pollination biology of this native species. I also assess the effects of herbivory on growth and the reproductive success of A. berteroi. Finally, I elucidate how habitat fragmentation and quality are correlated with reproductive fitness of this native perennial plant. Using a novel experimental approach, I determined the most effective pollinator group. I used nylon fishing line of widths corresponding to proboscis diameter of the major groups of visitors to examine pollen removal and deposition. In the field, I estimated visitation frequency and efficacy of each pollinator type. Using potted plants, I exposed flowers to single visit from different types of pollinators to measure fruit set. I performed artificial defoliation with scissors on plants growing in the greenhouse to assess the effects of defoliation before flowering as well as during flowering. Additionally, I used structural equation modelling (SEM) to elucidate how A. berteroi reproductive fitness was affected by habitat fragmentation and quality. My experiments provide evidence that Angadenia berteroi is specialized for bee pollination; though butterflies, skippers and others also visit its flowers, A. berteroi is exclusively pollinated by two native bees of the South Florida pine rocklands . This research also demonstrated that herbivory by the oleander moth may have direct and indirect effects on Angadenia berteroi growth and reproductive success. The SEM results suggested that habitat quality (litter depth and subcanopy cover) may favor reproduction in native species of the South Florida pine rocklands that are properly maintained by periodic fires and exotic control. Insights from this threatened and charismatic species may provide impetus to properly manage remaining pine rocklands in South Florida for this and other endemic understory species.
Resumo:
Angadenia berteroi is a tropical perennial subshrub of the pine rocklands with large yellow flowers that set very few fruits. My dissertation seeks to elucidate the factors that affect the reproductive fitness of Angadenia berteroi a native species of the south Florida pine rocklands. I provide novel information on the pollination biology of this native species. I also assess the effects of herbivory on growth and the reproductive success of A. berteroi. Finally, I elucidate how habitat fragmentation and quality are correlated with reproductive fitness of this native perennial plant.^ Using a novel experimental approach, I determined the most effective pollinator group. I used nylon fishing line of widths corresponding to proboscis diameter of the major groups of visitors to examine pollen removal and deposition. In the field, I estimated visitation frequency and efficacy of each pollinator type. Using potted plants, I exposed flowers to single visit from different types of pollinators to measure fruit set. I performed artificial defoliation with scissors on plants growing in the greenhouse to assess the effects of defoliation before flowering as well as during flowering. Additionally, I used structural equation modelling (SEM) to elucidate how A. berteroi reproductive fitness was affected by habitat fragmentation and quality. ^ My experiments provide evidence that Angadenia berteroi is specialized for bee pollination; though butterflies, skippers and others also visit its flowers, A. berteroi is exclusively pollinated by two native bees of the South Florida pine rocklands . This research also demonstrated that herbivory by the oleander moth may have direct and indirect effects on Angadenia berteroi growth and reproductive success. The SEM results suggested that habitat quality (litter depth and subcanopy cover) may favor reproduction in native species of the South Florida pine rocklands that are properly maintained by periodic fires and exotic control. Insights from this threatened and charismatic species may provide impetus to properly manage remaining pine rocklands in South Florida for this and other endemic understory species.^