5 resultados para Defense mechanism

em Digital Commons at Florida International University


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Small states that lack capacity and act on their own may fall victim to international and domestic terrorism, transnational organized crime or criminal gangs. The critical issue is not whether small Caribbean states should cooperate in meeting security challenges, but it is rather in what manner, and by which mechanisms can they overcome obstacles in the way of cooperation. The remit of the Regional Security System (RSS) has expanded dramatically, but its capabilities have improved very slowly. The member governments of the RSS are reluctant to develop military capacity beyond current levels since they see economic and social development and disaster relief as priorities, requiring little investment in military hardware. The RSS depends on international donors such as the USA, Canada, Great Britain, and increasingly China to fund training programs, maintain equipment and acquire material. In the view of most analysts, an expanded regional arrangement based on an RSS nucleus is not likely in the foreseeable future. Regional political consensus remains elusive and the predominance of national interests over regional considerations continues to serve as an obstacle to any CARICOM wide regional defense mechanism. Countries in the Caribbean, including the members of the RSS, have to become more responsible for their own security from their own resources. While larger CARICOM economies can do this, it would be difficult for most OECS members of the RSS to do the same. The CARICOM region including the RSS member countries, have undertaken direct regional initiatives in security collaboration. Implementation of the recommendations of the Regional Task Force on Crime and Security (RTFCS) and the structure and mechanisms created for the staging of the Cricket World Cup (CWC 2007) resulted in unprecedented levels of cooperation and permanent legacy institutions for the regional security toolbox. The most important tier of security relationships for the region is the United States and particularly USSOUTHCOM. The Caribbean Basin Security Initiative [CBSI] in which the countries of the RSS participate is a useful U.S. sponsored tool to strengthen the capabilities of the Caribbean countries and promote regional ownership of security initiatives. Future developments under discussion by policy makers in the Caribbean security environment include the granting of law enforcement authority to the military, the formation of a single OECS Police Force, and the creation of a single judicial and law enforcement space. The RSS must continue to work with its CARICOM partners, as well as with the traditional “Atlantic Powers” particularly Canada, the United States and the United Kingdom to implement a general framework for regional security collaboration. Regional security cooperation should embrace wider traditional and non-traditional elements of security appropriate to the 21st century. Security cooperation must utilize to the maximum the best available institutions, mechanisms, techniques and procedures already available in the region. The objective should not be the creation of new agencies but rather the generation of new resources to take effective operations to higher cumulative levels. Security and non-security tools should be combined for both strategic and operational purposes. Regional, hemispheric, and global implications of tactical and operational actions must be understood and appreciated by the forces of the RSS member states. The structure and mechanisms, created for the staging of Cricket World Cup 2007 should remain as legacy institutions and a toolbox for improving regional security cooperation in the Caribbean. RSS collaboration should build on the process of operational level synergies with traditional military partners. In this context, the United States must be a true partner with shared interests, and with the ability to work unobtrusively in a nationalistic environment. Withdrawal of U.S. support for the RSS is not an option.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study investigates the effects of content-based ESOL instruction on the overall English proficiency of foreign-born college students. Based on various psychological and social factors which affect second language acquisition, it is suggested that the techniques of content-based instruction, while focusing on subject matter, allow the learners to overcome the language barrier by neutralizing their subconscious defense mechanism, thus attaining greater proficiency.^ Two groups of Miami-Dade Community College ESOL students were chosen as subjects for this study: a control group composed of students from the North and Wolfson campuses, where the ESOL program is based predominantly on structural or structural-functional approach, and an experimental group of Medical Center campus students, where content-based instruction is incorporated into curriculum. Ethnicity, gender, age, and other differences in the population are discussed in the study.^ The students' English Placement Test (EPT) scores were used as covariate, and the scores on Multiple Assessment Programs and Services (MAPS) test as dependent variables. Multivariate analysis of variance (MANOVA) was applied to test significant difference between the means. The results of the analysis of data indicate that there is a consistent difference in the mean performance of the Medical Center campus ESOL students demonstrated by their scores on MAPS. Although neither ethnicity, nor gender of the subjects has affected the outcome, age had a contributing effect. The implications of these findings suggest that content-based instruction facilitates greater overall English proficiency in foreign-born college students. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent advances in electronic and computer technologies lead to wide-spread deployment of wireless sensor networks (WSNs). WSNs have wide range applications, including military sensing and tracking, environment monitoring, smart environments, etc. Many WSNs have mission-critical tasks, such as military applications. Thus, the security issues in WSNs are kept in the foreground among research areas. Compared with other wireless networks, such as ad hoc, and cellular networks, security in WSNs is more complicated due to the constrained capabilities of sensor nodes and the properties of the deployment, such as large scale, hostile environment, etc. Security issues mainly come from attacks. In general, the attacks in WSNs can be classified as external attacks and internal attacks. In an external attack, the attacking node is not an authorized participant of the sensor network. Cryptography and other security methods can prevent some of external attacks. However, node compromise, the major and unique problem that leads to internal attacks, will eliminate all the efforts to prevent attacks. Knowing the probability of node compromise will help systems to detect and defend against it. Although there are some approaches that can be used to detect and defend against node compromise, few of them have the ability to estimate the probability of node compromise. Hence, we develop basic uniform, basic gradient, intelligent uniform and intelligent gradient models for node compromise distribution in order to adapt to different application environments by using probability theory. These models allow systems to estimate the probability of node compromise. Applying these models in system security designs can improve system security and decrease the overheads nearly in every security area. Moreover, based on these models, we design a novel secure routing algorithm to defend against the routing security issue that comes from the nodes that have already been compromised but have not been detected by the node compromise detecting mechanism. The routing paths in our algorithm detour those nodes which have already been detected as compromised nodes or have larger probabilities of being compromised. Simulation results show that our algorithm is effective to protect routing paths from node compromise whether detected or not.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The South American Defense Council (CSD), created in March 2009 as a military coordinating body of the Union of South American Nations (UNASUR) demonstrates a growing trend among Latin American countries to approach matters of regional security independent of the United States. The CSD also indicates a maturation of democratic civil military relations in a region once dominated by authoritarian military regimes. The CSD aims to facilitate the exchange of information about regional defense policies, promote collaboration for disaster relief, and promote civil-military engagement. In less than a year it is hardly a tested entity, but the presence of 12 South American states coming together around security policy marks an important moment in the evolution of civil-military relations in the region. Brazil has taken on an important leadership role in the CSD, acting as a leader in recent regional peacekeeping efforts. As a geopolitical move, Brazil also sees a benefit in promoting good relationships with all countries of South america, given its common border with nine of them. Although the United States is not a member of the CSD, the organization's agenda of infromation exchange of defense policies, military cooperation, and capacity building, including disaster assistance and preparedness provide opportunities for greater collaboration. The CSD is not part of the Inter-American System created after the Second World War. It is unclear how its work will coincide with the OAS Committee on Hemispheric Security or its Secretariat for Multidimensional Security. The U.S. should view the CSD as a mechanism to promote joint initiatives that encourage democratic governance in the region.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent advances in electronic and computer technologies lead to wide-spread deployment of wireless sensor networks (WSNs). WSNs have wide range applications, including military sensing and tracking, environment monitoring, smart environments, etc. Many WSNs have mission-critical tasks, such as military applications. Thus, the security issues in WSNs are kept in the foreground among research areas. Compared with other wireless networks, such as ad hoc, and cellular networks, security in WSNs is more complicated due to the constrained capabilities of sensor nodes and the properties of the deployment, such as large scale, hostile environment, etc. Security issues mainly come from attacks. In general, the attacks in WSNs can be classified as external attacks and internal attacks. In an external attack, the attacking node is not an authorized participant of the sensor network. Cryptography and other security methods can prevent some of external attacks. However, node compromise, the major and unique problem that leads to internal attacks, will eliminate all the efforts to prevent attacks. Knowing the probability of node compromise will help systems to detect and defend against it. Although there are some approaches that can be used to detect and defend against node compromise, few of them have the ability to estimate the probability of node compromise. Hence, we develop basic uniform, basic gradient, intelligent uniform and intelligent gradient models for node compromise distribution in order to adapt to different application environments by using probability theory. These models allow systems to estimate the probability of node compromise. Applying these models in system security designs can improve system security and decrease the overheads nearly in every security area. Moreover, based on these models, we design a novel secure routing algorithm to defend against the routing security issue that comes from the nodes that have already been compromised but have not been detected by the node compromise detecting mechanism. The routing paths in our algorithm detour those nodes which have already been detected as compromised nodes or have larger probabilities of being compromised. Simulation results show that our algorithm is effective to protect routing paths from node compromise whether detected or not.