2 resultados para Deep-sea chondrichthyans diversity

em Digital Commons at Florida International University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study was to determine the extent to which oceanic anoxic events (OAE's) are recorded in deep-water deposits of the former western Tethyan Sea, by investigating the Cenomanian-Turonian time interval characterized by the worldwide OAE 2 event. The study improved our knowledge of the possible controlling mechanisms that triggered this event at these sites, and furthered our understanding of this global phenomenon. This was examined by high-resolution, multi-proxy analyses of sediments at DSDP Sites 386 and 144, including sedimentology, scanning electron microscopy, stable isotopes, bulk and clay mineralogy, major and trace element geochemistry, biomarkers, and paleontological data. ^ The results provide a better stratigraphic resolution for the Cenomanian-Turonian, which allowed for more precise determination of chronologic boundaries, sedimentation rates at DSDP Site 386, and a more accurate calculation of the frequency of the cycles recorded in the sequence, which fall predominantly within the precession (∼23 kyr) and short eccentricity (∼100 kyr) ranges. The combined proxies allow assessment of the correlation of δ13Corg, and major and trace elements with the predominance of cyanobacteria. These organisms were the main producers of the organic matter during the dysoxic and euxinic conditions of OAE 2 at DSDP Site 386. A huge amount of microcrystalline quartz of eolian origin is also associated with OAE 2. The geochemical proxies further provide evidence that OAE 2 was linked to increased volcanism outside the deep water of the proto-Atlantic Ocean. The clays in the Turonian sediments are terrigenous and derived predominantly from eolian transport. Comparing DSDP Site 386 and 144 with stratotype sections, the δ13C org and TOC data indicate that OAE 2 seems diachronous throughout the proto-Atlantic Ocean. ^ This study concludes that the development of anoxic conditions in the deep water of the Atlantic during the latest Cenomanian-Turonian resulted from a combination of factors related to local oceanic setting and mitigated by global tectonism and climate. The data provide a more comprehensive view of the interacting factors that led to sustained high productivity of the cyanobacteria and photosynthetic protists that produced organic-carbon-rich deposits in the world's oceans. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study was to test 3 hypotheses: (a) that late Miocene to early Pliocene constriction and complete closure of the Central American Seaway (CAS), connecting tropical Atlantic and East Equatorial Pacific (EEP) oceans, caused decreased productivity in the Caribbean, due to reduced coastal upwelling and an end to the connection with high-productivity Pacific waters, (b) reduced paleoproductivity resulted in decreased diversity in the Caribbean and, (c) this decreased availability of food (reduced paleoproductivity) was responsible for larger mean test size in the three most common benthic foraminiferal species Epistominella exigua, Oridorsalis umbonatus and Globocassidulina subglobosa. ^ These are tested by applying correlation analysis to 7 groups of paleoceanographic proxies, 3 indices of diversity measures and mean test size data from the Caribbean Ocean Drilling Project Site 999, to 47 core samples for the interval between 8.3-2.5 Ma. Results are compared with published Caribbean and Pacific deep-sea records. ^ The Caribbean, between 8.3-7.9 Ma, experienced reduced current velocity and lower ventilation of bottom waters. Thereafter, until 4.2 Ma, the seasonality of phytodetritus input increased and ventilation further reduced. From 4.2-2.5 Ma, paleoproductivity decreased, current velocity reduced, ventilation improved, and the seasonality of phytodetrital input decreased dramatically. The benthic foraminiferal diversity followed the same trend as paleoproductivity. Individual correlation analysis between mean test size of benthic foraminiferal species Epistominella exigua, Oridorsalis umbonatus and Globocassidulina subglobosa and paleoceanographic proxies yielded a positive and significant relationship with paleoproductivity. However, a combined datasets of all 3 species yielded a negative and significant relationship with species abundance. ^ Thus, the study concludes that (a) the gradual closure of the CAS led Caribbean diversity and paleoproductivity to decrease abruptly at 7.9 Ma, when the nutrient-rich Pacific deep waters were cut off, and then, again with the complete closure of the seaway at 4.2 Ma, (b) diversity and paleoproductivity are positively correlated in the Caribbean and (c) that the availability of food is an overriding factor that influences mean test size; lower availability of food and decreased abundance leads to larger test size. ^