3 resultados para Deconvolution

em Digital Commons at Florida International University


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In 1972 the ionized cluster beam (ICB) deposition technique was introduced as a new method for thin film deposition. At that time the use of clusters was postulated to be able to enhance film nucleation and adatom surface mobility, resulting in high quality films. Although a few researchers reported singly ionized clusters containing 10$\sp2$-10$\sp3$ atoms, others were unable to repeat their work. The consensus now is that film effects in the early investigations were due to self-ion bombardment rather than clusters. Subsequently in recent work (early 1992) synthesis of large clusters of zinc without the use of a carrier gas was demonstrated by Gspann and repeated in our laboratory. Clusters resulted from very significant changes in two source parameters. Crucible pressure was increased from the earlier 2 Torr to several thousand Torr and a converging-diverging nozzle 18 mm long and 0.4 mm in diameter at the throat was used in place of the 1 mm x 1 mm nozzle used in the early work. While this is practical for zinc and other high vapor pressure materials it remains impractical for many materials of industrial interest such as gold, silver, and aluminum. The work presented here describes results using gold and silver at pressures of around 1 and 50 Torr in order to study the effect of the pressure and nozzle shape. Significant numbers of large clusters were not detected. Deposited films were studied by atomic force microscopy (AFM) for roughness analysis, and X-ray diffraction.^ Nanometer size islands of zinc deposited on flat silicon substrates by ICB were also studied by atomic force microscopy and the number of atoms/cm$\sp2$ was calculated and compared to data from Rutherford backscattering spectrometry (RBS). To improve the agreement between data from AFM and RBS, convolution and deconvolution algorithms were implemented to study and simulate the interaction between tip and sample in atomic force microscopy. The deconvolution algorithm takes into account the physical volume occupied by the tip resulting in an image that is a more accurate representation of the surface.^ One method increasingly used to study the deposited films both during the growth process and following, is ellipsometry. Ellipsometry is a surface analytical technique used to determine the optical properties and thickness of thin films. In situ measurements can be made through the windows of a deposition chamber. A method for determining the optical properties of a film, that is sensitive only to the growing film and accommodates underlying interfacial layers, multiple unknown underlayers, and other unknown substrates was developed. This method is carried out by making an initial ellipsometry measurement well past the real interface and by defining a virtual interface in the vicinity of this measurement. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tumor functional volume (FV) and its mean activity concentration (mAC) are the quantities derived from positron emission tomography (PET). These quantities are used for estimating radiation dose for a therapy, evaluating the progression of a disease and also use it as a prognostic indicator for predicting outcome. PET images have low resolution, high noise and affected by partial volume effect (PVE). Manually segmenting each tumor is very cumbersome and very hard to reproduce. To solve the above problem I developed an algorithm, called iterative deconvolution thresholding segmentation (IDTS) algorithm; the algorithm segment the tumor, measures the FV, correct for the PVE and calculates mAC. The algorithm corrects for the PVE without the need to estimate camera's point spread function (PSF); also does not require optimizing for a specific camera. My algorithm was tested in physical phantom studies, where hollow spheres (0.5-16 ml) were used to represent tumors with a homogeneous activity distribution. It was also tested on irregular shaped tumors with a heterogeneous activity profile which were acquired using physical and simulated phantom. The physical phantom studies were performed with different signal to background ratios (SBR) and with different acquisition times (1-5 min). The algorithm was applied on ten clinical data where the results were compared with manual segmentation and fixed percentage thresholding method called T50 and T60 in which 50% and 60% of the maximum intensity respectively is used as threshold. The average error in FV and mAC calculation was 30% and -35% for 0.5 ml tumor. The average error FV and mAC calculation were ~5% for 16 ml tumor. The overall FV error was ∼10% for heterogeneous tumors in physical and simulated phantom data. The FV and mAC error for clinical image compared to manual segmentation was around -17% and 15% respectively. In summary my algorithm has potential to be applied on data acquired from different cameras as its not dependent on knowing the camera's PSF. The algorithm can also improve dose estimation and treatment planning.^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tumor functional volume (FV) and its mean activity concentration (mAC) are the quantities derived from positron emission tomography (PET). These quantities are used for estimating radiation dose for a therapy, evaluating the progression of a disease and also use it as a prognostic indicator for predicting outcome. PET images have low resolution, high noise and affected by partial volume effect (PVE). Manually segmenting each tumor is very cumbersome and very hard to reproduce. To solve the above problem I developed an algorithm, called iterative deconvolution thresholding segmentation (IDTS) algorithm; the algorithm segment the tumor, measures the FV, correct for the PVE and calculates mAC. The algorithm corrects for the PVE without the need to estimate camera’s point spread function (PSF); also does not require optimizing for a specific camera. My algorithm was tested in physical phantom studies, where hollow spheres (0.5-16 ml) were used to represent tumors with a homogeneous activity distribution. It was also tested on irregular shaped tumors with a heterogeneous activity profile which were acquired using physical and simulated phantom. The physical phantom studies were performed with different signal to background ratios (SBR) and with different acquisition times (1-5 min). The algorithm was applied on ten clinical data where the results were compared with manual segmentation and fixed percentage thresholding method called T50 and T60 in which 50% and 60% of the maximum intensity respectively is used as threshold. The average error in FV and mAC calculation was 30% and -35% for 0.5 ml tumor. The average error FV and mAC calculation were ~5% for 16 ml tumor. The overall FV error was ~10% for heterogeneous tumors in physical and simulated phantom data. The FV and mAC error for clinical image compared to manual segmentation was around -17% and 15% respectively. In summary my algorithm has potential to be applied on data acquired from different cameras as its not dependent on knowing the camera’s PSF. The algorithm can also improve dose estimation and treatment planning.