22 resultados para Data confidentiality and integrity
em Digital Commons at Florida International University
Resumo:
The paper examines the nature of qualitative empirical studies published in the AHRD proceedings from 1999-2003 and discusses findings on method, rationale for method, data collection, sampling strategies, and integrity measures.
Resumo:
Because some Web users will be able to design a template to visualize information from scratch, while other users need to automatically visualize information by changing some parameters, providing different levels of customization of the information is a desirable goal. Our system allows the automatic generation of visualizations given the semantics of the data, and the static or pre-specified visualization by creating an interface language. We address information visualization taking into consideration the Web, where the presentation of the retrieved information is a challenge. ^ We provide a model to narrow the gap between the user's way of expressing queries and database manipulation languages (SQL) without changing the system itself thus improving the query specification process. We develop a Web interface model that is integrated with the HTML language to create a powerful language that facilitates the construction of Web-based database reports. ^ As opposed to other papers, this model offers a new way of exploring databases focusing on providing Web connectivity to databases with minimal or no result buffering, formatting, or extra programming. We describe how to easily connect the database to the Web. In addition, we offer an enhanced way on viewing and exploring the contents of a database, allowing users to customize their views depending on the contents and the structure of the data. Current database front-ends typically attempt to display the database objects in a flat view making it difficult for users to grasp the contents and the structure of their result. Our model narrows the gap between databases and the Web. ^ The overall objective of this research is to construct a model that accesses different databases easily across the net and generates SQL, forms, and reports across all platforms without requiring the developer to code a complex application. This increases the speed of development. In addition, using only the Web browsers, the end-user can retrieve data from databases remotely to make necessary modifications and manipulations of data using the Web formatted forms and reports, independent of the platform, without having to open different applications, or learn to use anything but their Web browser. We introduce a strategic method to generate and construct SQL queries, enabling inexperienced users that are not well exposed to the SQL world to build syntactically and semantically a valid SQL query and to understand the retrieved data. The generated SQL query will be validated against the database schema to ensure harmless and efficient SQL execution. (Abstract shortened by UMI.)^
Resumo:
This research presents several components encompassing the scope of the objective of Data Partitioning and Replication Management in Distributed GIS Database. Modern Geographic Information Systems (GIS) databases are often large and complicated. Therefore data partitioning and replication management problems need to be addresses in development of an efficient and scalable solution. ^ Part of the research is to study the patterns of geographical raster data processing and to propose the algorithms to improve availability of such data. These algorithms and approaches are targeting granularity of geographic data objects as well as data partitioning in geographic databases to achieve high data availability and Quality of Service(QoS) considering distributed data delivery and processing. To achieve this goal a dynamic, real-time approach for mosaicking digital images of different temporal and spatial characteristics into tiles is proposed. This dynamic approach reuses digital images upon demand and generates mosaicked tiles only for the required region according to user's requirements such as resolution, temporal range, and target bands to reduce redundancy in storage and to utilize available computing and storage resources more efficiently. ^ Another part of the research pursued methods for efficient acquiring of GIS data from external heterogeneous databases and Web services as well as end-user GIS data delivery enhancements, automation and 3D virtual reality presentation. ^ There are vast numbers of computing, network, and storage resources idling or not fully utilized available on the Internet. Proposed "Crawling Distributed Operating System "(CDOS) approach employs such resources and creates benefits for the hosts that lend their CPU, network, and storage resources to be used in GIS database context. ^ The results of this dissertation demonstrate effective ways to develop a highly scalable GIS database. The approach developed in this dissertation has resulted in creation of TerraFly GIS database that is used by US government, researchers, and general public to facilitate Web access to remotely-sensed imagery and GIS vector information. ^
Resumo:
With the proliferation of multimedia data and ever-growing requests for multimedia applications, there is an increasing need for efficient and effective indexing, storage and retrieval of multimedia data, such as graphics, images, animation, video, audio and text. Due to the special characteristics of the multimedia data, the Multimedia Database management Systems (MMDBMSs) have emerged and attracted great research attention in recent years. Though much research effort has been devoted to this area, it is still far from maturity and there exist many open issues. In this dissertation, with the focus of addressing three of the essential challenges in developing the MMDBMS, namely, semantic gap, perception subjectivity and data organization, a systematic and integrated framework is proposed with video database and image database serving as the testbed. In particular, the framework addresses these challenges separately yet coherently from three main aspects of a MMDBMS: multimedia data representation, indexing and retrieval. In terms of multimedia data representation, the key to address the semantic gap issue is to intelligently and automatically model the mid-level representation and/or semi-semantic descriptors besides the extraction of the low-level media features. The data organization challenge is mainly addressed by the aspect of media indexing where various levels of indexing are required to support the diverse query requirements. In particular, the focus of this study is to facilitate the high-level video indexing by proposing a multimodal event mining framework associated with temporal knowledge discovery approaches. With respect to the perception subjectivity issue, advanced techniques are proposed to support users' interaction and to effectively model users' perception from the feedback at both the image-level and object-level.
Resumo:
Professional standards of ethics proclaim the core values of a profession, describe expected professional duties and responsibilities, and provide a framework for ethical practice and ethical decision-making. The purpose of this mixed, quantitative and qualitative, survey study was to examine HRD professionals' perceptions about the AHRD Standards on Ethics and Integrity, how HRD professionals used the Standards for research and decision-making, and the extent to which the Standards provided guidance for ethical decision-making. Through an on-line survey instrument, 182 members of AHRD were surveyed. The open-ended questions were analyzed using thematic analysis to expand on, inform, and support the quantitative findings. The close-ended questions were analyzed with frequency distributions, descriptive statistics, cross tabulations, and Spearman rank correlations. The results showed a significant relationship between (a) years of AHRD membership and level of familiarity with the Standards, (b) years of AHRD membership and use of the Standards for research, and (c) level of familiarity with the Standards and use of the Standards for research. There were no significant differences among scholars, scholar practitioners, practitioners, and students regarding their perceptions about the Standards. The results showed that the Standards were not well known or widely used. Nevertheless, the results indicated overall positive perceptions about the Standards. Seventy percent agreed that the Standards provided an appropriate set of ethical principles and reflected respondents' own standards of conduct. Seventy-eight percent believed that the Standards were important for defining HRD as a profession and 54% believed they were important for developing a sense of belonging to the HRD profession. Fifty-one percent believed the Standards should be enforceable and 61% agreed members should sign the membership application form showing willingness to adhere to the Standards. Seventy-seven percent based work-related ethical decisions on personal beliefs of right and wrong and 56% on established professional values and rules of right and wrong. The findings imply that if the professional standards of ethics are to influence the profession, they should be widely publicized and discussed among members, they should have some binding power, and their use should be encouraged.
Resumo:
With the explosive growth of the volume and complexity of document data (e.g., news, blogs, web pages), it has become a necessity to semantically understand documents and deliver meaningful information to users. Areas dealing with these problems are crossing data mining, information retrieval, and machine learning. For example, document clustering and summarization are two fundamental techniques for understanding document data and have attracted much attention in recent years. Given a collection of documents, document clustering aims to partition them into different groups to provide efficient document browsing and navigation mechanisms. One unrevealed area in document clustering is that how to generate meaningful interpretation for the each document cluster resulted from the clustering process. Document summarization is another effective technique for document understanding, which generates a summary by selecting sentences that deliver the major or topic-relevant information in the original documents. How to improve the automatic summarization performance and apply it to newly emerging problems are two valuable research directions. To assist people to capture the semantics of documents effectively and efficiently, the dissertation focuses on developing effective data mining and machine learning algorithms and systems for (1) integrating document clustering and summarization to obtain meaningful document clusters with summarized interpretation, (2) improving document summarization performance and building document understanding systems to solve real-world applications, and (3) summarizing the differences and evolution of multiple document sources.
Resumo:
Due to the rapid advances in computing and sensing technologies, enormous amounts of data are being generated everyday in various applications. The integration of data mining and data visualization has been widely used to analyze these massive and complex data sets to discover hidden patterns. For both data mining and visualization to be effective, it is important to include the visualization techniques in the mining process and to generate the discovered patterns for a more comprehensive visual view. In this dissertation, four related problems: dimensionality reduction for visualizing high dimensional datasets, visualization-based clustering evaluation, interactive document mining, and multiple clusterings exploration are studied to explore the integration of data mining and data visualization. In particular, we 1) propose an efficient feature selection method (reliefF + mRMR) for preprocessing high dimensional datasets; 2) present DClusterE to integrate cluster validation with user interaction and provide rich visualization tools for users to examine document clustering results from multiple perspectives; 3) design two interactive document summarization systems to involve users efforts and generate customized summaries from 2D sentence layouts; and 4) propose a new framework which organizes the different input clusterings into a hierarchical tree structure and allows for interactive exploration of multiple clustering solutions.
Resumo:
long-term research on freshwater ecosystems provides insights that can be difficult to obtain from other approaches. Widespread monitoring of ecologically relevant water-quality parameters spanning decades can facilitate important tests of ecological principles. Unique long-term data sets and analytical tools are increasingly available, allowing for powerful and synthetic analyses across sites. long-term measurements or experiments in aquatic systems can catch rare events, changes in highly variable systems, time-lagged responses, cumulative effects of stressors, and biotic responses that encompass multiple generations. Data are available from formal networks, local to international agencies, private organizations, various institutions, and paleontological and historic records; brief literature surveys suggest much existing data are not synthesized. Ecological sciences will benefit from careful maintenance and analyses of existing long-term programs, and subsequent insights can aid in the design of effective future long-term experimental and observational efforts. long-term research on freshwaters is particularly important because of their value to humanity.
Resumo:
This paper details the research methods an introductory qualitative research class used to both study an issue related to race and identity, and to familiarize themselves with data collection strategies. Throughout the paper the authors attempt to capture the challenges, disagreements, and consensus building that marked this unusual research endeavor.
Resumo:
Kernel-level malware is one of the most dangerous threats to the security of users on the Internet, so there is an urgent need for its detection. The most popular detection approach is misuse-based detection. However, it cannot catch up with today's advanced malware that increasingly apply polymorphism and obfuscation. In this thesis, we present our integrity-based detection for kernel-level malware, which does not rely on the specific features of malware. ^ We have developed an integrity analysis system that can derive and monitor integrity properties for commodity operating systems kernels. In our system, we focus on two classes of integrity properties: data invariants and integrity of Kernel Queue (KQ) requests. ^ We adopt static analysis for data invariant detection and overcome several technical challenges: field-sensitivity, array-sensitivity, and pointer analysis. We identify data invariants that are critical to system runtime integrity from Linux kernel 2.4.32 and Windows Research Kernel (WRK) with very low false positive rate and very low false negative rate. We then develop an Invariant Monitor to guard these data invariants against real-world malware. In our experiment, we are able to use Invariant Monitor to detect ten real-world Linux rootkits and nine real-world Windows malware and one synthetic Windows malware. ^ We leverage static and dynamic analysis of kernel and device drivers to learn the legitimate KQ requests. Based on the learned KQ requests, we build KQguard to protect KQs. At runtime, KQguard rejects all the unknown KQ requests that cannot be validated. We apply KQguard on WRK and Linux kernel, and extensive experimental evaluation shows that KQguard is efficient (up to 5.6% overhead) and effective (capable of achieving zero false positives against representative benign workloads after appropriate training and very low false negatives against 125 real-world malware and nine synthetic attacks). ^ In our system, Invariant Monitor and KQguard cooperate together to protect data invariants and KQs in the target kernel. By monitoring these integrity properties, we can detect malware by its violation of these integrity properties during execution.^
Resumo:
Kernel-level malware is one of the most dangerous threats to the security of users on the Internet, so there is an urgent need for its detection. The most popular detection approach is misuse-based detection. However, it cannot catch up with today's advanced malware that increasingly apply polymorphism and obfuscation. In this thesis, we present our integrity-based detection for kernel-level malware, which does not rely on the specific features of malware. We have developed an integrity analysis system that can derive and monitor integrity properties for commodity operating systems kernels. In our system, we focus on two classes of integrity properties: data invariants and integrity of Kernel Queue (KQ) requests. We adopt static analysis for data invariant detection and overcome several technical challenges: field-sensitivity, array-sensitivity, and pointer analysis. We identify data invariants that are critical to system runtime integrity from Linux kernel 2.4.32 and Windows Research Kernel (WRK) with very low false positive rate and very low false negative rate. We then develop an Invariant Monitor to guard these data invariants against real-world malware. In our experiment, we are able to use Invariant Monitor to detect ten real-world Linux rootkits and nine real-world Windows malware and one synthetic Windows malware. We leverage static and dynamic analysis of kernel and device drivers to learn the legitimate KQ requests. Based on the learned KQ requests, we build KQguard to protect KQs. At runtime, KQguard rejects all the unknown KQ requests that cannot be validated. We apply KQguard on WRK and Linux kernel, and extensive experimental evaluation shows that KQguard is efficient (up to 5.6% overhead) and effective (capable of achieving zero false positives against representative benign workloads after appropriate training and very low false negatives against 125 real-world malware and nine synthetic attacks). In our system, Invariant Monitor and KQguard cooperate together to protect data invariants and KQs in the target kernel. By monitoring these integrity properties, we can detect malware by its violation of these integrity properties during execution.
Resumo:
This dissertation established a software-hardware integrated design for a multisite data repository in pediatric epilepsy. A total of 16 institutions formed a consortium for this web-based application. This innovative fully operational web application allows users to upload and retrieve information through a unique human-computer graphical interface that is remotely accessible to all users of the consortium. A solution based on a Linux platform with My-SQL and Personal Home Page scripts (PHP) has been selected. Research was conducted to evaluate mechanisms to electronically transfer diverse datasets from different hospitals and collect the clinical data in concert with their related functional magnetic resonance imaging (fMRI). What was unique in the approach considered is that all pertinent clinical information about patients is synthesized with input from clinical experts into 4 different forms, which were: Clinical, fMRI scoring, Image information, and Neuropsychological data entry forms. A first contribution of this dissertation was in proposing an integrated processing platform that was site and scanner independent in order to uniformly process the varied fMRI datasets and to generate comparative brain activation patterns. The data collection from the consortium complied with the IRB requirements and provides all the safeguards for security and confidentiality requirements. An 1-MR1-based software library was used to perform data processing and statistical analysis to obtain the brain activation maps. Lateralization Index (LI) of healthy control (HC) subjects in contrast to localization-related epilepsy (LRE) subjects were evaluated. Over 110 activation maps were generated, and their respective LIs were computed yielding the following groups: (a) strong right lateralization: (HC=0%, LRE=18%), (b) right lateralization: (HC=2%, LRE=10%), (c) bilateral: (HC=20%, LRE=15%), (d) left lateralization: (HC=42%, LRE=26%), e) strong left lateralization: (HC=36%, LRE=31%). Moreover, nonlinear-multidimensional decision functions were used to seek an optimal separation between typical and atypical brain activations on the basis of the demographics as well as the extent and intensity of these brain activations. The intent was not to seek the highest output measures given the inherent overlap of the data, but rather to assess which of the many dimensions were critical in the overall assessment of typical and atypical language activations with the freedom to select any number of dimensions and impose any degree of complexity in the nonlinearity of the decision space.
Resumo:
The microarray technology provides a high-throughput technique to study gene expression. Microarrays can help us diagnose different types of cancers, understand biological processes, assess host responses to drugs and pathogens, find markers for specific diseases, and much more. Microarray experiments generate large amounts of data. Thus, effective data processing and analysis are critical for making reliable inferences from the data. ^ The first part of dissertation addresses the problem of finding an optimal set of genes (biomarkers) to classify a set of samples as diseased or normal. Three statistical gene selection methods (GS, GS-NR, and GS-PCA) were developed to identify a set of genes that best differentiate between samples. A comparative study on different classification tools was performed and the best combinations of gene selection and classifiers for multi-class cancer classification were identified. For most of the benchmarking cancer data sets, the gene selection method proposed in this dissertation, GS, outperformed other gene selection methods. The classifiers based on Random Forests, neural network ensembles, and K-nearest neighbor (KNN) showed consistently god performance. A striking commonality among these classifiers is that they all use a committee-based approach, suggesting that ensemble classification methods are superior. ^ The same biological problem may be studied at different research labs and/or performed using different lab protocols or samples. In such situations, it is important to combine results from these efforts. The second part of the dissertation addresses the problem of pooling the results from different independent experiments to obtain improved results. Four statistical pooling techniques (Fisher inverse chi-square method, Logit method. Stouffer's Z transform method, and Liptak-Stouffer weighted Z-method) were investigated in this dissertation. These pooling techniques were applied to the problem of identifying cell cycle-regulated genes in two different yeast species. As a result, improved sets of cell cycle-regulated genes were identified. The last part of dissertation explores the effectiveness of wavelet data transforms for the task of clustering. Discrete wavelet transforms, with an appropriate choice of wavelet bases, were shown to be effective in producing clusters that were biologically more meaningful. ^
Resumo:
Groundwater systems of different densities are often mathematically modeled to understand and predict environmental behavior such as seawater intrusion or submarine groundwater discharge. Additional data collection may be justified if it will cost-effectively aid in reducing the uncertainty of a model's prediction. The collection of salinity, as well as, temperature data could aid in reducing predictive uncertainty in a variable-density model. However, before numerical models can be created, rigorous testing of the modeling code needs to be completed. This research documents the benchmark testing of a new modeling code, SEAWAT Version 4. The benchmark problems include various combinations of density-dependent flow resulting from variations in concentration and temperature. The verified code, SEAWAT, was then applied to two different hydrological analyses to explore the capacity of a variable-density model to guide data collection. ^ The first analysis tested a linear method to guide data collection by quantifying the contribution of different data types and locations toward reducing predictive uncertainty in a nonlinear variable-density flow and transport model. The relative contributions of temperature and concentration measurements, at different locations within a simulated carbonate platform, for predicting movement of the saltwater interface were assessed. Results from the method showed that concentration data had greater worth than temperature data in reducing predictive uncertainty in this case. Results also indicated that a linear method could be used to quantify data worth in a nonlinear model. ^ The second hydrological analysis utilized a model to identify the transient response of the salinity, temperature, age, and amount of submarine groundwater discharge to changes in tidal ocean stage, seasonal temperature variations, and different types of geology. The model was compared to multiple kinds of data to (1) calibrate and verify the model, and (2) explore the potential for the model to be used to guide the collection of data using techniques such as electromagnetic resistivity, thermal imagery, and seepage meters. Results indicated that the model can be used to give insight to submarine groundwater discharge and be used to guide data collection. ^
Resumo:
With the advent of peer to peer networks, and more importantly sensor networks, the desire to extract useful information from continuous and unbounded streams of data has become more prominent. For example, in tele-health applications, sensor based data streaming systems are used to continuously and accurately monitor Alzheimer's patients and their surrounding environment. Typically, the requirements of such applications necessitate the cleaning and filtering of continuous, corrupted and incomplete data streams gathered wirelessly in dynamically varying conditions. Yet, existing data stream cleaning and filtering schemes are incapable of capturing the dynamics of the environment while simultaneously suppressing the losses and corruption introduced by uncertain environmental, hardware, and network conditions. Consequently, existing data cleaning and filtering paradigms are being challenged. This dissertation develops novel schemes for cleaning data streams received from a wireless sensor network operating under non-linear and dynamically varying conditions. The study establishes a paradigm for validating spatio-temporal associations among data sources to enhance data cleaning. To simplify the complexity of the validation process, the developed solution maps the requirements of the application on a geometrical space and identifies the potential sensor nodes of interest. Additionally, this dissertation models a wireless sensor network data reduction system by ascertaining that segregating data adaptation and prediction processes will augment the data reduction rates. The schemes presented in this study are evaluated using simulation and information theory concepts. The results demonstrate that dynamic conditions of the environment are better managed when validation is used for data cleaning. They also show that when a fast convergent adaptation process is deployed, data reduction rates are significantly improved. Targeted applications of the developed methodology include machine health monitoring, tele-health, environment and habitat monitoring, intermodal transportation and homeland security.