7 resultados para DNA -- chemistry
em Digital Commons at Florida International University
Resumo:
Restriction enzyme inhibition and lambda exonuclease studies indicate that carcinogen N-acetoxy-N-acetyl-2 aminofluorene (AAAF) binds to sequences on ɸX174 RF and SV40 plasmids DNA that are similar to the eight preferred binding sites previously located on pBR 322. Both DNAs were digested with enzyme Hinf I and resultant fragments 32P end-labeled. Labeled fragments were reacted with the carcinogen to give one to sixteen bound moieties per DNA. Fragments were isolated and restriccion enzyme and lambda exonuclease inhibition assays were performed. Inhibition detected occurred at selected sites and was not specific for a certain enzyme or certain size of recognition sequence. Results of these assays allow mapping of the location of high affinity binding sites of the carcinogen on both DNAs. All sites have common sequence elements: the presence of either the sequence T(G/C)TT(G/C) or the sequence T(G/C) CTT(G/C).
Resumo:
DNA serves as a target molecule for several types of enzymes and may assume a wide variety of structural motifs depending upon the local sequence. The BssHII restriction site (GC)3 resides in a 9bp region of alternating pyrimidine and purine residues within the &phis;X174 genome. Such sequences are known to demonstrate non-canonical helical behavior under the appropriate conditions. The kinetics of BssHII cleavage was investigated in supercoiled and linear plasmid DNA, and in a 323bp DNA fragment obtained via amplification of &phis;X174. The rate of enzyme cleavage was enhanced in the supercoiled form and in the presence of 50μM cobalt hexamine. Similarly, cobalt hexamine was also found to enhance TaqI activity directly adjacent to the (GC)3 region. ^ Initial DNA polymerase I binding studies (including a gel mobility shift assay and a protection assay) indicated a notable interaction between DNA polymerase I and the BssHII site. An in-depth study revealed that equilibrium binding of DNA polymerase I to the T7 RNA polymerase promoter was comparable to that of the (GC)3 site, however the strongest interaction was observed with a cruciform containing region. Increasing the ionic strength of the solution environment, including the addition of DNA polymerase I reaction buffer significantly decreased the equilibrium dissociation constant values. ^ It is suggested that the region within or around the BssHII site experiences a conformational change generating a novel structure under the influence of supercoiled tension or 50μM cobalt hexamine. It is proposed that this transition may enhance enzyme activity and binding by providing an initial enzyme-docking site—the rate-limiting step in restriction enzyme kinetics. The high binding potential of DNA polymerase I for each of the motifs described, is hypothesized to be due to recognition of the structural DNA anomalies by the 3′–5′ exonuclease domain. ^
Resumo:
The purpose of this research was to demonstrate the applicability of reduced-size STR (Miniplex) primer sets to challenging samples and to provide the forensic community with new information regarding the analysis of degraded and inhibited DNA. The Miniplex primer sets were validated in accordance with guidelines set forth by the Scientific Working Group on DNA Analysis Methods (SWGDAM) in order to demonstrate the scientific validity of the kits. The Miniplex sets were also used in the analysis of DNA extracted from human skeletal remains and telogen hair. In addition, a method for evaluating the mechanism of PCR inhibition was developed using qPCR. The Miniplexes were demonstrated to be a robust and sensitive tool for the analysis of DNA with as low as 100 pg of template DNA. They also proved to be better than commercial kits in the analysis of DNA from human skeletal remains, with 64% of samples tested producing full profiles, compared to 16% for a commercial kit. The Miniplexes also produced amplification of nuclear DNA from human telogen hairs, with partial profiles obtained from as low as 60 pg of template DNA. These data suggest smaller PCR amplicons may provide a useful alternative to mitochondrial DNA for forensic analysis of degraded DNA from human skeletal remains, telogen hairs, and other challenging samples. In the evaluation of inhibition by qPCR, the effect of amplicon length and primer melting temperature was evaluated in order to determine the binding mechanisms of different PCR inhibitors. Several mechanisms were indicated by the inhibitors tested, including binding of the polymerase, binding to the DNA, and effects on the processivity of the polymerase during primer extension. The data obtained from qPCR illustrated a method by which the type of inhibitor could be inferred in forensic samples, and some methods of reducing inhibition for specific inhibitors were demonstrated. An understanding of the mechanism of the inhibitors found in forensic samples will allow analysts to select the proper methods for inhibition removal or the type of analysis that can be performed, and will increase the information that can be obtained from inhibited samples.
Resumo:
Trinucleotide repeat (TNR) expansions and deletions are associated with human neurodegeneration and cancer. However, their underlying mechanisms remain to be elucidated. Recent studies have demonstrated that CAG repeat expansions can be initiated by oxidative DNA base damage and fulfilled by base excision repair (BER), suggesting active roles for oxidative DNA damage and BER in TNR instability. Here, we provide the first evidence that oxidative DNA damage can induce CTG repeat deletions along with limited expansions in human cells. Biochemical characterization of BER in the context of (CTG)20 repeats further revealed that repeat instability correlated with the position of a base lesion in the repeat tract. A lesion located at the 59-end of CTG repeats resulted in expansion, whereas a lesion located either in the middle or the 39-end of the repeats led to deletions only. The positioning effects appeared to be determined by the formation of hairpins at various locations on the template and the damaged strands that were bypassed by DNA polymerase b and processed by flap endonuclease 1 with different efficiency. Our study indicates that the position of a DNA base lesion governs whether TNR is expanded or deleted through BER.
Resumo:
There is an increasing demand for DNA analysis because of the sensitivity of the method and the ability to uniquely identify and distinguish individuals with a high degree of certainty. But this demand has led to huge backlogs in evidence lockers since the current DNA extraction protocols require long processing time. The DNA analysis procedure becomes more complicated when analyzing sexual assault casework samples where the evidence contains more than one contributor. Additional processing to separate different cell types in order to simplify the final data interpretation further contributes to the existing cumbersome protocols. The goal of the present project is to develop a rapid and efficient extraction method that permits selective digestion of mixtures. ^ Selective recovery of male DNA was achieved with as little as 15 minutes lysis time upon exposure to high pressure under alkaline conditions. Pressure cycling technology (PCT) is carried out in a barocycler that has a small footprint and is semi-automated. Typically less than 10% male DNA is recovered using the standard extraction protocol for rape kits, almost seven times more male DNA was recovered from swabs using this novel method. Various parameters including instrument setting and buffer composition were optimized to achieve selective recovery of sperm DNA. Some developmental validation studies were also done to determine the efficiency of this method in processing samples exposed to various conditions that can affect the quality of the extraction and the final DNA profile. ^ Easy to use interface, minimal manual interference and the ability to achieve high yields with simple reagents in a relatively short time make this an ideal method for potential application in analyzing sexual assault samples.^
Resumo:
The presence of inhibitory substances in biological forensic samples has, and continues to affect the quality of the data generated following DNA typing processes. Although the chemistries used during the procedures have been enhanced to mitigate the effects of these deleterious compounds, some challenges remain. Inhibitors can be components of the samples, the substrate where samples were deposited or chemical(s) associated to the DNA purification step. Therefore, a thorough understanding of the extraction processes and their ability to handle the various types of inhibitory substances can help define the best analytical processing for any given sample. A series of experiments were conducted to establish the inhibition tolerance of quantification and amplification kits using common inhibitory substances in order to determine if current laboratory practices are optimal for identifying potential problems associated with inhibition. DART mass spectrometry was used to determine the amount of inhibitor carryover after sample purification, its correlation to the initial inhibitor input in the sample and the overall effect in the results. Finally, a novel alternative at gathering investigative leads from samples that would otherwise be ineffective for DNA typing due to the large amounts of inhibitory substances and/or environmental degradation was tested. This included generating data associated with microbial peak signatures to identify locations of clandestine human graves. Results demonstrate that the current methods for assessing inhibition are not necessarily accurate, as samples that appear inhibited in the quantification process can yield full DNA profiles, while those that do not indicate inhibition may suffer from lowered amplification efficiency or PCR artifacts. The extraction methods tested were able to remove >90% of the inhibitors from all samples with the exception of phenol, which was present in variable amounts whenever the organic extraction approach was utilized. Although the results attained suggested that most inhibitors produce minimal effect on downstream applications, analysts should practice caution when selecting the best extraction method for particular samples, as casework DNA samples are often present in small quantities and can contain an overwhelming amount of inhibitory substances.
Resumo:
The presence of inhibitory substances in biological forensic samples has, and continues to affect the quality of the data generated following DNA typing processes. Although the chemistries used during the procedures have been enhanced to mitigate the effects of these deleterious compounds, some challenges remain. Inhibitors can be components of the samples, the substrate where samples were deposited or chemical(s) associated to the DNA purification step. Therefore, a thorough understanding of the extraction processes and their ability to handle the various types of inhibitory substances can help define the best analytical processing for any given sample. A series of experiments were conducted to establish the inhibition tolerance of quantification and amplification kits using common inhibitory substances in order to determine if current laboratory practices are optimal for identifying potential problems associated with inhibition. DART mass spectrometry was used to determine the amount of inhibitor carryover after sample purification, its correlation to the initial inhibitor input in the sample and the overall effect in the results. Finally, a novel alternative at gathering investigative leads from samples that would otherwise be ineffective for DNA typing due to the large amounts of inhibitory substances and/or environmental degradation was tested. This included generating data associated with microbial peak signatures to identify locations of clandestine human graves. Results demonstrate that the current methods for assessing inhibition are not necessarily accurate, as samples that appear inhibited in the quantification process can yield full DNA profiles, while those that do not indicate inhibition may suffer from lowered amplification efficiency or PCR artifacts. The extraction methods tested were able to remove >90% of the inhibitors from all samples with the exception of phenol, which was present in variable amounts whenever the organic extraction approach was utilized. Although the results attained suggested that most inhibitors produce minimal effect on downstream applications, analysts should practice caution when selecting the best extraction method for particular samples, as casework DNA samples are often present in small quantities and can contain an overwhelming amount of inhibitory substances.^