6 resultados para DIG-labeling
em Digital Commons at Florida International University
Resumo:
Chloroperoxidase (CPO) is a heme-containing glycoprotein secreted by the marine fungus Caldariomyces fumago. Chloroperoxidase contains one ferriprotoporphyrin IX prosthetic group per molecule and catalyzes a variety of reactions, such as halogenation, peroxidation and epoxidation. The versatile catalytic activities of CPO coupled with the increasing demands for chiral synthesis have attracted an escalating interest in understanding the mechanistic and structural properties of this enzyme. In order to better understand the mechanisms of CPO-catalyzed enantioselective reactions and to fine-tune the catalytic properties of chloroperoxidase, asparagine 74 (N74) located in the narrow substrate access channel of CPO was replaced by a bulky, nonpolar valine and a polar glutamine using site-directed mutagenesis. The CPO N74 mutants displayed significantly enhanced activity toward nonpolar substrates compared to wild-type CPO as a result of changes in space and polarity of the heme distal environment. More interestingly, N74 mutants showed dramatically decreased chlorination and catalase activity but significantly enhanced epoxidation activity as a consequence of improved kinetic perfection introduced by the mutation as reflected by the favorable changes in k cat and kcat/KM of these reactions. It is also noted that the N74V mutant is capable of decomposing cyanide, the most notorious poison for many hemoproteins, as judged by the unique binding behavior of N74V with potassium cyanide. Histidine 105 (H105) was replaced by a nonpolar amino acid alanine using site-directed mutagenesis. The CPO H105 mutant (H105A) displayed dramatically decreased chlorination and catalase activity possibly because of the decreased polarity in the heme distal environment and loss of the hydrogen bonds between histidine 105 and glutamic acid 183. However, significantly increased enantioselectivity was observed for the epoxidation of bulky styrene derivatives. Furthermore, my study provides strong evidence for the proposed histidine/cysteine ligand switch in chloroperoxidase, providing experimental support for the structure of the 420-nm absorption maximum for a number of carbon monoxide complexes of heme-thiolate proteins. For the NMR study, [dCPO(heme)] was produced using 90% deuterated growth medium with excess heme precursors and [dCPO(Phe)] was grown in the same highly deuterated medium that had been supplemented with excess natural phenylalanine. To make complete heme proton assignments, NMR spectroscopy has been performed for high-resolution structural characterization of [dCPO(heme)] and [dCPO(Phe)] to achieve unambiguous and complete heme proton assignments, which also allows important amino acids close to the heme active center to be determined.
Resumo:
This study evaluated three menu nutrition labeling formats: calorie only information, a healthy symbol, and a nutrient list. Daily sales data for a table-service restaurant located on a university campus were recorded during a four-week period from January to February 2013 to examine changes in average nutritional content of the entrees purchased by customers when different nutrition labels were provided. A survey was conducted to assess the customers’ use of nutrition labels, their preferences among the three labeling formats, their entree selections, their cognitive beliefs with regard to healthy eating, and their demographic characteristics. A total of 173 questionnaires were returned and included in data analysis. Analysis of Variance (ANOVA) and regression analyses were performed using SAS. The results showed that favorable attitudes toward healthy eating and the use of nutrition labels were both significantly associated with healthier entrée selections. Age and diet status had some effects on the respondent’s use of nutrition labels. The calorie only information format was the most effective in reducing calories contained in the entrees sold, and the nutrient list was most effective in reducing fat and saturated fat content of the entrees sold. The healthy symbol was the least effective format, but interestingly enough, was most preferred by respondents. The findings provide support for future research and offer implications for policy makers, public health professionals, and foodservice operations.
Resumo:
The current study implements a speech perception experiment that interrogates local perceptions of Spanish varieties in Miami. Participants (N=292) listened to recordings of three Spanish varieties (Peninsular, Highland Colombian, and Post-Castro Cuban) and were given background information about the speakers, including the parents’ country of origin. In certain cases, the parents’ national-origin label matched the country of origin of the speaker, but otherwise the background information and voices were mismatched. The manipulation distinguishes perceptions determined by bottom-up cues (dialect) from top-down ones (social information). Participants then rated each voice for a range of personal characteristics and answered hypothetical questions about the speakers’ employment, family, and income. Results show clear top-down effects of the social information that often drive perceptions up or down depending on the traits themselves. Additionally, the data suggest differences in perceptions between Hispanic/non-Hispanic and Cuban/non-Cuban participants, although the Cuban participants do not drive the Hispanic participants’ perceptions.
Resumo:
Cancer remains one of the world’s most devastating diseases, with more than 10 million new cases every year. However, traditional treatments have proven insufficient for successful medical management of cancer due to the chemotherapeutics’ difficulty in achieving therapeutic concentrations at the target site, non-specific cytotoxicity to normal tissues, and limited systemic circulation lifetime. Although, a concerted effort has been placed in developing and successfully employing nanoparticle(NP)-based drug delivery vehicles successfully mitigate the physiochemical and pharmacological limitations of chemotherapeutics, work towards controlling the subcellular fate of the carrier, and ultimately its payload, has been limited. Because efficient therapeutic action requires drug delivery to specific organelles, the subcellular barrier remains critical obstacle to maximize the full potential of NP-based delivery vehicles. The aim of my dissertation work is to better understand how NP-delivery vehicles’ structural, chemical, and physical properties affect the internalization method and subcellular localization of the nanocarrier. In this work we explored how side-chain and backbone modifications affect the conjugated polymer nanoparticle (CPN) toxicity and subcellular localization. We discovered how subtle chemical modifications had profound consequences on the polymer’s accumulation inside the cell and cellular retention. We also examined how complexation of CPN with polysaccharides affects uptake efficiency and subcellular localization. This work also presents how changes to CPN backbone biodegradability can significantly affect the subcellular localization of the material. A series of triphenyl phosphonium-containing CPNs were synthesized and the effect of backbone modifications have on the cellular toxicity and intracellular fate of the material. A mitochondrial-specific polymer exhibiting time-dependent release is reported. Finally, we present a novel polymerization technique which allows for the controlled incorporation of electron-accepting benzothiadiazole units onto the polymer chain. This facilitates tuning CPN emission towards red emission. The work presented here, specifically, the effect that side-chain and structure, polysaccharide formulation and CPN degradability have on material’s uptake behavior, can help maximize the full potential of NP-based delivery vehicles for improved chemotherapeutic drug delivery.
Resumo:
Chloroperoxidase (CPO) is a heme-containing glycoprotein secreted by the marine fungus Caldariomyces fumago. Chloroperoxidase contains one ferriprotoporphyrin IX prosthetic group per molecule and catalyzes a variety of reactions, such as halogenation, peroxidation and epoxidation. The versatile catalytic activities of CPO coupled with the increasing demands for chiral synthesis have attracted an escalating interest in understanding the mechanistic and structural properties of this enzyme. In order to better understand the mechanisms of CPO-catalyzed enantioselective reactions and to fine-tune the catalytic properties of chloroperoxidase, asparagine 74 (N74) located in the narrow substrate access channel of CPO was replaced by a bulky, nonpolar valine and a polar glutamine using site-directed mutagenesis. The CPO N74 mutants displayed significantly enhanced activity toward nonpolar substrates compared to wild-type CPO as a result of changes in space and polarity of the heme distal environment. More interestingly, N74 mutants showed dramatically decreased chlorination and catalase activity but significantly enhanced epoxidation activity as a consequence of improved kinetic perfection introduced by the mutation as reflected by the favorable changes in kcat and kcat/KM of these reactions. It is also noted that the N74V mutant is capable of decomposing cyanide, the most notorious poison for many hemoproteins, as judged by the unique binding behavior of N74V with potassium cyanide. Histidine 105 (H105) was replaced by a nonpolar amino acid alanine using site-directed mutagenesis. The CPO H105 mutant (H105A) displayed dramatically decreased chlorination and catalase activity possibly because of the decreased polarity in the heme distal environment and loss of the hydrogen bonds between histidine 105 and glutamic acid 183. However, significantly increased enantioselectivity was observed for the epoxidation of bulky styrene derivatives. Furthermore, my study provides strong evidence for the proposed histidine/cysteine ligand switch in chloroperoxidase, providing experimental support for the structure of the 420-nm absorption maximum for a number of carbon monoxide complexes of heme-thiolate proteins. For the NMR study, [dCPO(heme)] was produced using 90% deuterated growth medium with excess heme precursors and [dCPO(Phe)] was grown in the same highly deuterated medium that had been supplemented with excess natural phenylalanine. To make complete heme proton assignments, NMR spectroscopy has been performed for high-resolution structural characterization of [dCPO(heme)] and [dCPO(Phe)] to achieve unambiguous and complete heme proton assignments, which also allows important amino acids close to the heme active center to be determined.
Resumo:
Cancer remains one of the world’s most devastating diseases, with more than 10 million new cases every year. However, traditional treatments have proven insufficient for successful medical management of cancer due to the chemotherapeutics’ difficulty in achieving therapeutic concentrations at the target site, non-specific cytotoxicity to normal tissues, and limited systemic circulation lifetime. Although, a concerted effort has been placed in developing and successfully employing nanoparticle(NP)-based drug delivery vehicles successfully mitigate the physiochemical and pharmacological limitations of chemotherapeutics, work towards controlling the subcellular fate of the carrier, and ultimately its payload, has been limited. Because efficient therapeutic action requires drug delivery to specific organelles, the subcellular barrier remains critical obstacle to maximize the full potential of NP-based delivery vehicles. The aim of my dissertation work is to better understand how NP-delivery vehicles’ structural, chemical, and physical properties affect the internalization method and subcellular localization of the nanocarrier. ^ In this work we explored how side-chain and backbone modifications affect the conjugated polymer nanoparticle (CPN) toxicity and subcellular localization. We discovered how subtle chemical modifications had profound consequences on the polymer’s accumulation inside the cell and cellular retention. We also examined how complexation of CPN with polysaccharides affects uptake efficiency and subcellular localization. ^ This work also presents how changes to CPN backbone biodegradability can significantly affect the subcellular localization of the material. A series of triphenyl phosphonium-containing CPNs were synthesized and the effect of backbone modifications have on the cellular toxicity and intracellular fate of the material. A mitochondrial-specific polymer exhibiting time-dependent release is reported. Finally, we present a novel polymerization technique which allows for the controlled incorporation of electron-accepting benzothiadiazole units onto the polymer chain. This facilitates tuning CPN emission towards red emission. ^ The work presented here, specifically, the effect that side-chain and structure, polysaccharide formulation and CPN degradability have on material’s uptake behavior, can help maximize the full potential of NP-based delivery vehicles for improved chemotherapeutic drug delivery.^