19 resultados para DIFFERENT DOPING LEVELS
em Digital Commons at Florida International University
Resumo:
This study investigated the effects of two types of bilingual education programs (two-way and transitional) on the academic performance, attitudes, and metacognitive awareness of 5th grade students who entered kindergarten or first grade with different levels of English proficiency. The multi-stage sample consisted of students who had participated in each program for a period of at least five years. A mixed model design allowed for the collection of quantitative and qualitative data that were analyzed accordingly and integrated. ^ The findings indicated no significant differences between the two groups on measures of academic achievement in English. Significant differences were found in the number of semesters required for the students to become proficient English speakers. An important conclusion, based on these findings, was that the students enrolled in the two-way bilingual education (TWBE) programs learned English faster. Moreover, they maintained a high level of proficiency in Spanish, scoring significantly higher than the transitional bilingual education group on measures of Spanish reading ability.^ Questionnaire and interview data indicated that the students in the two-way bilingual education programs tended to use more Spanish for recreational purposes and tended to rate themselves as more proficient Spanish speakers than their peers. Conversely, the students enrolled in the transitional bilingual education programs tended to rate themselves as more proficient in English than their peers. ^ The level of English language proficiency upon entering school (five years later) was found to make a difference in academic achievement, as measured by standardized tests. Five years of schooling did not fully eliminate the gap in academic performance between students with different ESOL entry levels at kindergarten. However, entry level did not have an effect on attitudes towards bilingualism. ^ It is concluded that, although there was no significant difference between the two groups on measures of academic achievement in English, TWBE and transitional programs have differential effects. Students in the TWBE programs acquired oral language at a faster rate, developed literacy skills in their native language, and acquired more positive attitudes towards bilingualism. Theoretical, methodological, and policy implications of the findings are discussed. ^
Resumo:
A wide range of non-destructive testing (NDT) methods for the monitoring the health of concrete structure has been studied for several years. The recent rapid evolution of wireless sensor network (WSN) technologies has resulted in the development of sensing elements that can be embedded in concrete, to monitor the health of infrastructure, collect and report valuable related data. The monitoring system can potentially decrease the high installation time and reduce maintenance cost associated with wired monitoring systems. The monitoring sensors need to operate for a long period of time, but sensors batteries have a finite life span. Hence, novel wireless powering methods must be devised. The optimization of wireless power transfer via Strongly Coupled Magnetic Resonance (SCMR) to sensors embedded in concrete is studied here. First, we analytically derive the optimal geometric parameters for transmission of power in the air. This specifically leads to the identification of the local and global optimization parameters and conditions, it was validated through electromagnetic simulations. Second, the optimum conditions were employed in the model for propagation of energy through plain and reinforced concrete at different humidity conditions, and frequencies with extended Debye's model. This analysis leads to the conclusion that SCMR can be used to efficiently power sensors in plain and reinforced concrete at different humidity levels and depth, also validated through electromagnetic simulations. The optimization of wireless power transmission via SMCR to Wearable and Implantable Medical Device (WIMD) are also explored. The optimum conditions from the analytics were used in the model for propagation of energy through different human tissues. This analysis shows that SCMR can be used to efficiently transfer power to sensors in human tissue without overheating through electromagnetic simulations, as excessive power might result in overheating of the tissue. Standard SCMR is sensitive to misalignment; both 2-loops and 3-loops SCMR with misalignment-insensitive performances are presented. The power transfer efficiencies above 50% was achieved over the complete misalignment range of 0°-90° and dramatically better than typical SCMR with efficiencies less than 10% in extreme misalignment topologies.
Resumo:
Construction projects are complex endeavors that require the involvement of different professional disciplines in order to meet various project objectives that are often conflicting. The level of complexity and the multi-objective nature of construction projects lend themselves to collaborative design and construction such as integrated project delivery (IPD), in which relevant disciplines work together during project conception, design and construction. Traditionally, the main objectives of construction projects have been to build in the least amount of time with the lowest cost possible, thus the inherent and well-established relationship between cost and time has been the focus of many studies. The importance of being able to effectively model relationships among multiple objectives in building construction has been emphasized in a wide range of research. In general, the trade-off relationship between time and cost is well understood and there is ample research on the subject. However, despite sustainable building designs, relationships between time and environmental impact, as well as cost and environmental impact, have not been fully investigated. The objectives of this research were mainly to analyze and identify relationships of time, cost, and environmental impact, in terms of CO2 emissions, at different levels of a building: material level, component level, and building level, at the pre-use phase, including manufacturing and construction, and the relationships of life cycle cost and life cycle CO2 emissions at the usage phase. Additionally, this research aimed to develop a robust simulation-based multi-objective decision-support tool, called SimulEICon, which took construction data uncertainty into account, and was capable of incorporating life cycle assessment information to the decision-making process. The findings of this research supported the trade-off relationship between time and cost at different building levels. Moreover, the time and CO2 emissions relationship presented trade-off behavior at the pre-use phase. The results of the relationship between cost and CO2 emissions were interestingly proportional at the pre-use phase. The same pattern continually presented after the construction to the usage phase. Understanding the relationships between those objectives is a key in successfully planning and designing environmentally sustainable construction projects.
Resumo:
The purpose of this research study was to determine the effect of two different instructional groupings (cooperative and traditional whole-class) on student achievement and attitudes using a computer-based interactive videodisc biology unit. The subjects were 64 high school biology students assigned to two heterogeneous experimental groups, randomly selected from two preassigned summer school biology classes, one honors, the other regular. A two-group, posttest-only, control group experimental research design was utilized. Achievement at three cognitive levels and attitudes towards science laserdisc instruction were measured at the conclusion of the study. The cooperative group consistently outperformed the traditional group in achievement posttest scores. Factorial ANOVA on total (overall) achievement scores indicated that subjects in cooperative groups significantly outperformed those in the traditional group, and also that the instructional group, class level, and gender interacted in an ordinal fashion to make a significant difference in how female and male subjects were affected by the treatments depending on their class (aptitude) level. Regular level females and honors level males performed much better when in cooperative groups, whereas group membership did not appear to make a difference for either honors level females or regular level males. A t-test comparing honors level males revealed that cooperative groups were close to being significantly better in total achievement posttest scores than their traditional group counterparts. Factorial MANOVA comparing the instructional groups at three cognitive levels found no significant difference. Analysis on the attitudes posttest data also revealed that subjects in cooperative groups demonstrated more positive attitudes towards science laserdisc instruction; however these differences were not found to be significant. Significant interactions in attitudes of females and males from different class levels had the opposite effect as achievement: honors level females and regular level males demonstrated more positive attitudes towards science laserdisc instruction when in cooperative groups, whereas group membership did not appear to make a difference for honors level males, and regular level females demonstrated the lowest attitudes ratings of any group when involved in cooperative groups. This contrast between achievement and attitudinal results suggests cross-gender interaction in traditionally defined gender roles.
Resumo:
A wide range of non-destructive testing (NDT) methods for the monitoring the health of concrete structure has been studied for several years. The recent rapid evolution of wireless sensor network (WSN) technologies has resulted in the development of sensing elements that can be embedded in concrete, to monitor the health of infrastructure, collect and report valuable related data. The monitoring system can potentially decrease the high installation time and reduce maintenance cost associated with wired monitoring systems. The monitoring sensors need to operate for a long period of time, but sensors batteries have a finite life span. Hence, novel wireless powering methods must be devised. The optimization of wireless power transfer via Strongly Coupled Magnetic Resonance (SCMR) to sensors embedded in concrete is studied here. First, we analytically derive the optimal geometric parameters for transmission of power in the air. This specifically leads to the identification of the local and global optimization parameters and conditions, it was validated through electromagnetic simulations. Second, the optimum conditions were employed in the model for propagation of energy through plain and reinforced concrete at different humidity conditions, and frequencies with extended Debye's model. This analysis leads to the conclusion that SCMR can be used to efficiently power sensors in plain and reinforced concrete at different humidity levels and depth, also validated through electromagnetic simulations. The optimization of wireless power transmission via SMCR to Wearable and Implantable Medical Device (WIMD) are also explored. The optimum conditions from the analytics were used in the model for propagation of energy through different human tissues. This analysis shows that SCMR can be used to efficiently transfer power to sensors in human tissue without overheating through electromagnetic simulations, as excessive power might result in overheating of the tissue. Standard SCMR is sensitive to misalignment; both 2-loops and 3-loops SCMR with misalignment-insensitive performances are presented. The power transfer efficiencies above 50% was achieved over the complete misalignment range of 0°-90° and dramatically better than typical SCMR with efficiencies less than 10% in extreme misalignment topologies.
Resumo:
A heuristic for batching orders in a manual order-picking warehouse has been developed. It prioritizes orders based on due time to prevent mixing of orders of different priority levels. The order density of aisles criterion is used to form batches. It also determines the number of pickers required and assigns batches to pickers such that there is a uniform workload per unit of time. The effectiveness of the heuristic was studied by observing computational time and aisle congestion for various numbers of total orders and number of orders that form a batch. An initial heuristic performed well for small number of orders, but for larger number of orders, a partitioning technique is computationally more efficient, needing only minutes to solve for thousands of orders, while preserving 90% of the batch quality obtained with the original heuristic. Comparative studies between the heuristic and other published heuristics are needed. ^
Resumo:
A challenge facing nutrition care providers and the Chinese community is how to improve and maintain dietary adequacy (DA) and quality of life (QoL) in older Chinese Americans. Little is known about the factors contributing to DA and the relationships between DA and QoL among community-dwelling older Chinese adults in South Florida. A DA model and a QoL model were hypothesized. ^ Structured interviews with 100 Chinese Floridians, ages ≥60, provided data to test the hypothesized models, using structured equation modeling. Participants (mean age ± SD = 70.9 + 6.8 years) included 59% females, 98% foreign-born, 23% non-English speakers, and 68% residents of Florida for 20 years or more. The findings supported the study hypotheses: an excellent goodness-of-fit of the DA model (χ2/DF (7) = .286; CFI = 1.000; TLI = 1.704; NFI = .934; RMSEA < .001, 90% CI < .0001 to < .001; SRMR = .033; AIC = 30.000; and BIC = 66.472) and an excellent goodness-of-fit of the QoL model (χ2/DF (6) = .811; CFI = 1.000; TLI = 1.013; NFI = .979; RMSEA < .001, 90% CI < .001 to .116; SRMR = .0429; AIC = 34.869; and BIC = 73.946). ^ The DA model consisted of a structure of four indicators (i.e. Body Mass Index, food practices, diet satisfaction, and appetite) and one intervening variable (i.e. combining nutrient adequacy with nutritional risk). BMI was the strongest, most reliable indicator of DA with the highest predictability coefficient (.63) and the ability to differentiate between participants with different DA levels. The QoL model consisted of a two-dimensional construct with one indicator (i.e. physical function) and one intervening variable (i.e. combining loneliness with social resources, depression, social function, and mental health). Physical function had the strongest predictability coefficient (.89), while other indicators contributed to QoL indirectly. When integrating the DA model to the QoL model, DA appears to influence QoL via indirect pathways. ^ It is necessary to include a precise measure of BMI as the basis for assessing DA in this population. Important goals of dietary interventions should be improving physical function and alleviating social and emotional isolation. ^
Resumo:
Respiratory gating in lung PET imaging to compensate for respiratory motion artifacts is a current research issue with broad potential impact on quantitation, diagnosis and clinical management of lung tumors. However, PET images collected at discrete bins can be significantly affected by noise as there are lower activity counts in each gated bin unless the total PET acquisition time is prolonged, so that gating methods should be combined with imaging-based motion correction and registration methods. The aim of this study was to develop and validate a fast and practical solution to the problem of respiratory motion for the detection and accurate quantitation of lung tumors in PET images. This included: (1) developing a computer-assisted algorithm for PET/CT images that automatically segments lung regions in CT images, identifies and localizes lung tumors of PET images; (2) developing and comparing different registration algorithms which processes all the information within the entire respiratory cycle and integrate all the tumor in different gated bins into a single reference bin. Four registration/integration algorithms: Centroid Based, Intensity Based, Rigid Body and Optical Flow registration were compared as well as two registration schemes: Direct Scheme and Successive Scheme. Validation was demonstrated by conducting experiments with the computerized 4D NCAT phantom and with a dynamic lung-chest phantom imaged using a GE PET/CT System. Iterations were conducted on different size simulated tumors and different noise levels. Static tumors without respiratory motion were used as gold standard; quantitative results were compared with respect to tumor activity concentration, cross-correlation coefficient, relative noise level and computation time. Comparing the results of the tumors before and after correction, the tumor activity values and tumor volumes were closer to the static tumors (gold standard). Higher correlation values and lower noise were also achieved after applying the correction algorithms. With this method the compromise between short PET scan time and reduced image noise can be achieved, while quantification and clinical analysis become fast and precise.
Resumo:
The origins of population dynamics depend on interplay between abiotic and biotic factors; the relative importance of each changing across space and time. Predation is a central feature of ecological communities that removes individuals (consumption) and alters prey traits (non-consumptive). Resource quality mitigates non-consumptive predator effects by stimulating growth and reproduction. Disturbance resets predator-prey interactions by removing both. I integrate experiments, time-series analysis, and performance trials to examine the relative importance of these on the population dynamics of a snail species by studying a variety of their traits. A review of ninety-three published articles revealed that snail abundance was much less in the Everglades and similar ecosystems compared to all other freshwater ecosystems considered. Separating consumptive from non-consumptive (cues) predator effects at different phosphorous levels with an experiment determined that phosphorous stimulated, but predator cues inhibited snail growth (34% vs. 23%), activity (38% vs. 53%), and reproductive effort (99% vs. 90%) compared to controls. Cues induced taller shells and smaller openings and moved to refugia where they reduced periphyton by 8%. Consumptive predator effects were minor in comparison. In a reciprocal transplant cage experiment along a predator cue and phosphorous gradient created by a canal, snails grew 10% faster and produced 37% more eggs far from the canal (fewer cues) when fed phosphorous-enriched periphyton from near the canal. Time-series analysis at four sites and predator performance trials reveal that phosphorous-enriched regions support larger snail populations, seasonal drying removes snails at all sites, crayfish negatively affect populations in enriched regions, and molluscivorous fish consume snails in the wet season. Combining these studies reveals interplay between resources, predators, and seasonality that limit snail populations in the Everglades and lead to their low abundance compared to other freshwater ecosystems. Resource quality is emerging as the critical factor because improving resources profoundly improved growth and reproduction; seasonal drying and predation become important at times and places. This work contributes to the general understanding in ecology of the relative importance of different factors that structure populations and provides evidence that bolsters monitoring efforts to assess the Comprehensive Everglades Restoration Plan that show phosphorous enrichment is a major driver of ecosystem change.
Resumo:
In this thesis, results of the investigation of a new low-dimensional cobaltates Ba2-xSrxCoO 4 are presented. The synthesis of both polycrystalline and single crystalline compounds using the methods of conventional solid state chemical reaction and floating-zone optical furnace is first introduced. Besides making polycrystalline powders, we successfully, for the first time, synthesized large single crystals of Ba2CoO4. Single crystals were also obtained for Sr doped Ba2-xSrxCoO 4. Powder and single crystal x-ray diffraction results indicate that pure Ba2CoO4 has a monoclinic structure at room temperature. With Sr doping, the lattice structure changes to orthorhombic when x ≥ 0.5 and to tetragonal when x = 2.0. In addition, Ba2CoO4 and Sr2CoO4, have completely different basic building blocks in the structure. One is CoO4 tetrahedron and the later is CoO6 octahedron, respectively. Electronic and magnetic properties were characterized and discussed. The magnetic susceptibility, specific heat and thermal conductivity show that Ba2CoO4 has an antiferromagnetic (AF) ground state with an AF ordering temperature TN = 25 K. However, the magnitude of the Néel temperature TN is significantly lower than the Curie-Weiss temperature (:&thetas;: ∼ 110 K), suggesting either reduced-dimensional magnetic interactions and/or the existence of magnetic frustration. The AF interaction persists in all the samples with different doping concentrations. The Néel temperature doesn't vary much in the monoclinic structure regime but decreases when the system enters orthorhombic. Magnetically, Ba2CoO4 has an AF insulating ground state while Sr2CoO4 has a ferromagnetic (FM) metallic ground state. Neutron powder refinement results indicate a magnetic structure with the spin mostly aligned along the a-axis. The result from a μ-spin rotation/relaxation (μ+SR) experiment agrees with our refinement. It confirms the AF order in the ab -plane. We also studied the spin dynamics and its anisotropy in the AF phase. The results from inelastic neutron scattering show that spin waves have a clear dispersion along a-axis but not along c-axis, indicating spin anisotropy. This work finds the strong spin-lattice coupling in this novel complex material. The interplay between the two degrees of freedom results an interesting phase diagram. Further research is needed when large single crystal samples are available.
Resumo:
This study is an attempt at achieving Net Zero Energy Building (NZEB) using a solar Organic Rankine Cycle (ORC) based on exergetic and economic measures. The working fluid, working conditions of the cycle, cycle configuration, and solar collector type are considered the optimization parameters for the solar ORC system. In the first section, a procedure is developed to compare ORC working fluids based on their molecular components, temperature-entropy diagram and fluid effects on the thermal efficiency, net power generated, vapor expansion ratio, and exergy efficiency of the Rankine cycle. Fluids with the best cycle performance are recognized in two different temperature levels within two different categories of fluids: refrigerants and non-refrigerants. Important factors that could lead to irreversibility reduction of the solar ORC are also investigated in this study. In the next section, the system requirements needed to maintain the electricity demand of a geothermal air-conditioned commercial building located in Pensacola of Florida is considered as the criteria to select the optimal components and optimal working condition of the system. The solar collector loop, building, and geothermal air conditioning system are modeled using TRNSYS. Available electricity bills of the building and the 3-week monitoring data on the performance of the geothermal system are employed to calibrate the simulation. The simulation is repeated for Miami and Houston in order to evaluate the effect of the different solar radiations on the system requirements. The final section discusses the exergoeconomic analysis of the ORC system with the optimum performance. Exergoeconomics rests on the philosophy that exergy is the only rational basis for assigning monetary costs to a system’s interactions with its surroundings and to the sources of thermodynamic inefficiencies within it. Exergoeconomic analysis of the optimal ORC system shows that the ratio Rex of the annual exergy loss to the capital cost can be considered a key parameter in optimizing a solar ORC system from the thermodynamic and economic point of view. It also shows that there is a systematic correlation between the exergy loss and capital cost for the investigated solar ORC system.
Resumo:
What actors and processes at what levels of analysis and through what mechanisms have pushed Iran's nuclear program (INP) towards being designated as a proliferation threat (securitization)? What actors and processes at what levels of analysis and through what mechanisms have pushed Iran's nuclear program away from being designated as an existential threat (de-securitization)? What has been the overall balance of power and interaction dynamics of these opposing forces over the last half-century and what is their most likely future trajectory? ^ Iran's nuclear story can be told as the unfolding of constant interaction between state and non-state forces of "nuclear securitization" and "nuclear de-securitization." Tracking the crisscrossing interaction between these different securitizing and de-securitizing actors in a historical context constitutes the central task of this project. ^ A careful tracing of "security events" on different analytical levels reveals the broad contours of the evolutionary trajectory of INP and its possible future path(s). Out of this theoretically conscious historical narrative, one can make informed observations about the overall thrust of INP along the securitization - de-securitization continuum. ^ The main contributions of this work are three fold: First, it brings a fresh theoretical perspective on Iran's proliferation behavior by utilizing the "securitization" theory tracing the initial indications of the threat designation of INP all the way back to the mid 1970s. Second, it gives a solid and thematically grounded historical texture to INP by providing an intimate engagement with the persons, processes, and events of Tehran's nuclear pursuit over half a century. Third, it demonstrates how INP has interacted with and even at times transformed the NPT as the keystone of the non-proliferation regime, and how it has affected and injected urgency to the international discourse on nuclear proliferation specifically in the Middle East.^
Resumo:
Synthesis and functionalization of large-area graphene and its structural, electrical and electrochemical properties has been investigated. First, the graphene films, grown by thermal chemical vapor deposition (CVD), contain three to five atomic layers of graphene, as confirmed by Raman spectroscopy and high-resolution transmission electron microscopy. Furthermore, the graphene film is treated with CF4 reactive-ion plasma to dope fluorine ions into graphene lattice as confirmed by X-ray photoelectron spectroscopy (XPS) and UV-photoemission spectroscopy (UPS). Electrochemical characterization reveals that the catalytic activity of graphene for iodine reduction enhanced with increasing plasma treatment time, which is attributed to increase in catalytic sites of graphene for charge transfer. The fluorinated graphene is characterized as a counter-electrode (CE) in a dye-sensitized solar cell (DSSC) which shows ~ 2.56% photon to electron conversion efficiency with ~11 mAcm−2 current density. Second, the large scale graphene film is covalently functionalized with HNO3 for high efficiency electro-catalytic electrode for DSSC. The XPS and UPS confirm the covalent attachment of C-OH, C(O)OH and NO3- moieties with carbon atoms through sp2-sp3 hybridization and Fermi level shift of graphene occurs under different doping concentrations, respectively. Finally, CoS-implanted graphene (G-CoS) film was prepared using CVD followed by SILAR method. The G-CoS electro-catalytic electrodes are characterized in a DSSC CE and is found to be highly electro-catalytic towards iodine reduction with low charge transfer resistance (Rct ~5.05 Ωcm 2) and high exchange current density (J0~2.50 mAcm -2). The improved performance compared to the pristine graphene is attributed to the increased number of active catalytic sites of G-CoS and highly conducting path of graphene. We also studied the synthesis and characterization of graphene-carbon nanotube (CNT) hybrid film consisting of graphene supported by vertical CNTs on a Si substrate. The hybrid film is inverted and transferred to flexible substrates for its application in flexible electronics, demonstrating a distinguishable variation of electrical conductivity for both tension and compression. Furthermore, both turn-on field and total emission current was found to depend strongly on the bending radius of the film and were found to vary in ranges of 0.8 - 3.1 V/μm and 4.2 - 0.4 mA, respectively.
Resumo:
Growth, morphology and biomass allocation in response to water depth was studied in white water lily,Nymphaea odorata Aiton. Plants were grown for 13 months in 30, 60 and 90 cm water in outdoor mesocosms in southern Florida. Water lily plant growth was distinctly seasonal with plants at all water levels producing more and larger leaves and more flowers in the warmer months. Plants in 30 cm water produced more but smaller and shorter-lived leaves than plants at 60 cm and 90 cm water levels. Although plants did not differ significantly in total biomass at harvest, plants in deeper water had significantly greater biomass allocated to leaves and roots, while plants in 30 cm water had significantly greater biomass allocated to rhizomes. Although lamina area and petiole length increased significantly with water level, lamina specific weight did not differ among water levels. Petiole specific weight increased significantly with increasing water level, implying a greater cost to tethering the larger laminae in deeper water. Lamina length and width scaled similarly at different water levels and modeled lamina area (LA) accurately (LAmodeled = 0.98LAmeasured + 3.96, R2 = 0.99). Lamina area was highly correlated with lamina weight (LW = 8.43LA − 66.78, R2 = 0.93), so simple linear measurements can predict water lily lamina area and lamina weight. These relationships were used to calculate monthly lamina surface area in the mesocosms. Plants in 30 cm water had lower total photosynthetic surface area than plants in 60 cm and 90 cm water levels throughout, and in the summer plants in 90 cm water showed a great increase in photosynthetic surface area as compared to plants in shallower water. These results support setting Everglades restoration water depth targets for sloughs at depths ≥45 cm and suggest that in the summer optimal growth for white water lilies occurs at depths ≥75 cm.
Resumo:
An important issue of resource distribution is the fairness of the distribution. For example, computer network management wishes to distribute network resource fairly to its users. To describe the fairness of the resource distribution, a quantitative fairness score function was proposed in 1984 by Jain et al. The purpose of this paper is to propose a modified network sharing fairness function so that the users can be treated differently according to their priority levels. The mathematical properties are discussed. The proposed fairness score function keeps all the nice properties of and provides better performance when the network users have different priority levels.