4 resultados para DEVELOPMENTAL CONTROL
em Digital Commons at Florida International University
Resumo:
The iridescentb lue color of several Selaginellasp ecies is caused by a physical effect, thinfilm interference.P redictionsf or a model film have been confirmedb y electronm icroscopyo f S. willdenowaEnid S. uncinataF. or the latters pecies iridescencec ontributest o leaf absorption at wavelengths above 450 nm and develops in environments enriched with far-red (730 nm) light. This evidence supports the involvement of phytochrome in the developmental control of iridescence.
Resumo:
This study examined the effects of computer assisted instruction (CAI) 1 hour per week for 18 weeks on changes in computational scores and attitudes of developmental mathematics students at schools with predominantly Black enrollment. Comparisons were made between students using CAI with differing software--PLATO, CSR or both together--and students using traditional instruction (TI) only.^ This study was conducted in the Dade County Public School System from February through June 1991, at two senior high schools. The dependent variables, the State Student Assessment Test (SSAT), and the School Subjects Attitude Scales (SSAS), measured students' computational scores and attitudes toward mathematics in 3 categories: interest, usefulness, and difficulty, respectively.^ Univariate analyses of variance were performed on the least squares mean differences from pretest to posttest for testing main effects and interactions. A t-test measured significant main effects and interactions. Results were interpreted at the.01 level of significance.^ Null hypotheses 1, 2, and 3 compared versions of CAI with the control group, for changes in mathematical computation scores measured with the SSAT. It could not be concluded that changes in standardized mathematics test scores of students using CAI with differing software 1 hour per week for 18 class hours combined with TI were significantly higher than changes in test scores for students receiving TI only.^ Null hypotheses 4, 5, and 6 tested the effects of CAI for attitudes toward mathematics for experimental groups against control groups measured with the SSAS. Changes in attitudes toward mathematics of students using CAI with differing software 1 hour per week for 18 class hours combined with TI were not significantly higher than attitude changes for students receiving TI only.^ Teacher effect on students' computational scores was a more influential variable than CAI. No interaction was found between gender and learning method on standardized mathematics test scores (null hypothesis 7). ^
Resumo:
This study examined the effectiveness of intelligent tutoring system instruction, grounded in John Anderson's ACT theory of cognition, on the achievement and attitude of developmental mathematics students in the community college setting. The quasi-experimental research used a pretest-posttest control group design. The dependent variables were problem solving achievement, overall achievement, and attitude towards mathematics. The independent variable was instructional method.^ Four intact classes and two instructors participated in the study for one semester. Two classes (n = 35) served as experimental groups; they received six lessons with real-world problems using intelligent tutoring system instruction. The other two classes (n = 24) served as control groups; they received six lessons with real-world problems using traditional instruction including graphing calculator support. It was hypothesized that students taught problem solving using the intelligent tutoring system would achieve more on the dependent variables than students taught without the intelligent tutoring system.^ Posttest mean scores for one teacher produced a significant difference in overall achievement for the experimental group. The same teacher had higher means, not significantly, for the experimental group in problem solving achievement. The study did not indicate a significant difference in attitude mean scores.^ It was concluded that using an intelligent tutoring system in problem solving instruction may impact student's overall mathematics achievement and problem solving achievement. Other factors must be considered, such as the teacher's classroom experience, the teacher's experience with the intelligent tutoring system, trained technical support, and trained student support; as well as student learning styles, motivation, and overall mathematics ability. ^
Resumo:
This study examined the effectiveness of intelligent tutoring system instruction, grounded in John Anderson's ACT theory of cognition, on the achievement and attitude of developmental mathematics students in the community college setting. The quasi-experimental research used a pretest-posttest control group design. The dependent variables were problem solving achievement, overall achievement, and attitude towards mathematics. The independent variable was instructional method. Four intact classes and two instructors participated in the study for one semester. Two classes (n = 35) served as experimental groups; they received six lessons with real-world problems using intelligent tutoring system instruction. The other two classes (n = 24) served as control groups; they received six lessons with real-world problems using traditional instruction including graphing calculator support. It was hypothesized that students taught problem solving using the intelligent tutoring system would achieve more on the dependent variables than students taught without the intelligent tutoring system. Posttest mean scores for one teacher produced a significant difference in overall achievement for the experimental group. The same teacher had higher means, not significantly, for the experimental group in problem solving achievement. The study did not indicate a significant difference in attitude mean scores. It was concluded that using an intelligent tutoring system in problem solving instruction may impact student's overall mathematics achievement and problem solving achievement. Other factors must be considered, such as the teacher's classroom experience, the teacher's experience with the intelligent tutoring system, trained technical support, and trained student support; as well as student learning styles, motivation, and overall mathematics ability.