4 resultados para DETRITAL ZIRCON
em Digital Commons at Florida International University
Resumo:
The relative importance of algal and detrital energy pathways remains a central question in wetlands ecology. We used bulk stable isotope analysis and fatty acid composition to investigate the relative contributions of periphyton (algae) and floc (detritus) in a freshwater wetland with the goal of determining the inputs of these resource pools to lower trophic-level consumers. All animal samples revealed fatty acid markers indicative of both microbial (detrital) and algal origins, though the relative contributions varied among species. Vascular plant markers were in low abundance in most consumers. Detritivory is important for chironomids and amphipods, as demonstrated by the enhanced bacterial fatty acids present in both consumers, while algal resources, in the form of periphyton, likely support ephemeropteran larvae. Invertebrates such as amphipods and grass shrimp appear to be important resources for small omnivorous fish, while Poecilia latipinna appear to strongly use periphyton and Ephemeroptera larvae as food sources. Both P. latipinna and Lepomis spp. assimilated small amounts of vascular plant debris, possibly due to unintentional ingestion of floc while foraging for invertebrates and insect larvae. Physid snails, Haitia spp., were characterized by considerably different fatty acid compositions than other taxa examined, and likely play a unique role in Everglades’ food webs.
Resumo:
Flocculent materials (floc), in aquatic systems usually consist of a non-consolidated layer of biogenic, detrital material relatively rich in organic matter which represents an important food-web component for invertebrates and fish. Thus, variations in its composition could impact food webs and change faunal structure. Transport, remineralization rates and deposition of floc may also be important factors in soil/sediment formation. In spite of its relevance and sensitivity to external factors, few chemical studies have been carried out on the biogeochemistry of floc material. In this study, we focused on the molecular characterization of the flocculent organic matter (OM), the assessment of its origin and its environmental fate at five stations along a freshwater to marine ecotone, namely the Taylor Slough, Everglades National Park (ENP), Florida. To tackle this issue, suspended, unconsolidated, detrital floc samples, soils/sediments and plants were analyzed for bulk properties, biomarkers and pigments. Both geochemical proxies and biomass-specific biomarkers were used to assess OM sources and transformations. Our results show that the detrital organic matter of the flocculent material is largely regulated by local vegetation inputs, ranging from periphyton, emergent and submerged plants and terrestrial plants such as mangroves, with molecular evidence of different degrees of diagenetic reworking, including fungal activity. Evidence is presented for both hydrodynamic transport of floc materials, and incorporation of floc OM into soils/sediments. However, some molecular parameters showed a decoupling between floc and underlying soil/sediment OM, suggesting that physical transport, incorporation and degradation/remineralization of OM in floc may be controlled by a combination of a variety of complex biogeochemical variables including hydrodynamic transport, hydroperiod characteristics, primary productivity, nutrient availability, and OM quality among others. Further investigations are needed to better understand the ecological role of floc in freshwater and coastal wetlands.
Resumo:
This study shows that light exposure of flocculent material (floc) from the Florida Coastal Everglades (FCE) results in significant dissolved organic matter (DOM) generation through photo-dissolution processes. Floc was collected at two sites along the Shark River Slough (SRS) and irradiated with artificial sunlight. The DOM generated was characterized using elemental analysis and excitation emission matrix fluorescence coupled with parallel factor analysis. To investigate the seasonal variations of DOM photo-generation from floc, this experiment was performed in typical dry (April) and wet (October) seasons for the FCE. Our results show that the dissolved organic carbon (DOC) for samples incubated under dark conditions displayed a relatively small increase, suggesting that microbial processes and/or leaching might be minor processes in comparison to photo-dissolution for the generation of DOM from floc. On the other hand, DOC increased substantially (as much as 259 mgC gC−1) for samples exposed to artificial sunlight, indicating the release of DOM through photo-induced alterations of floc. The fluorescence intensity of both humic-like and protein-like components also increased with light exposure. Terrestrial humic-like components were found to be the main contributors (up to 70%) to the chromophoric DOM (CDOM) pool, while protein-like components comprised a relatively small percentage (up to 16%) of the total CDOM. Simultaneously to the generation of DOC, both total dissolved nitrogen and soluble reactive phosphorus also increased substantially during the photo-incubation period. Thus, the photo-dissolution of floc can be an important source of DOM to the FCE environment, with the potential to influence nutrient dynamics in this system.
Resumo:
The Comprehensive Everglades Restoration includes plans to restore freshwater delivery to Taylor Slough, a shallow drainage basin in the Southern Everglades, ultimately resulting in increased freshwater flow to the downstream Taylor River estuary. The effect of altered hydrologic regime on the transport dynamics of flocculent, estuarine detritus is not well understood. We utilized a paramagnetic sediment tracer to examine detrital transport in three Taylor River pond/creek pairs during early wet versus late wet transition season estuarine flow conditions. Flux of floc tracer was greatest in the downstream direction during all observations, and was most pronounced during the early wet season, coincident with shallower water depth and faster discharge from northern Taylor River. Floc tracer was more likely to move upriver during the late wet/dry season. We observed a floc tracer transport velocity of approximately 1.74 to 1.78 m/day across both seasonal hydrologic conditions. Tracer dynamics were also surprisingly site-dependent, which may highlight the importance of channel geomorphology in regulating hydrologic and sediment transport conditions. Our data suggest that restoration of surface water delivery to Taylor River will influence downstream loading of detritus material into riverine ponds. These detrital inputs have the potential to enhance ecosystem primary productivity and/or secondary productivity.