14 resultados para DDM Data Distribution Management testbed benchmark design implementation instance generator
em Digital Commons at Florida International University
Resumo:
Background: Biologists often need to assess whether unfamiliar datasets warrant the time investment required for more detailed exploration. Basing such assessments on brief descriptions provided by data publishers is unwieldy for large datasets that contain insights dependent on specific scientific questions. Alternatively, using complex software systems for a preliminary analysis may be deemed as too time consuming in itself, especially for unfamiliar data types and formats. This may lead to wasted analysis time and discarding of potentially useful data. Results: We present an exploration of design opportunities that the Google Maps interface offers to biomedical data visualization. In particular, we focus on synergies between visualization techniques and Google Maps that facilitate the development of biological visualizations which have both low-overhead and sufficient expressivity to support the exploration of data at multiple scales. The methods we explore rely on displaying pre-rendered visualizations of biological data in browsers, with sparse yet powerful interactions, by using the Google Maps API. We structure our discussion around five visualizations: a gene co-regulation visualization, a heatmap viewer, a genome browser, a protein interaction network, and a planar visualization of white matter in the brain. Feedback from collaborative work with domain experts suggests that our Google Maps visualizations offer multiple, scale-dependent perspectives and can be particularly helpful for unfamiliar datasets due to their accessibility. We also find that users, particularly those less experienced with computer use, are attracted by the familiarity of the Google Maps API. Our five implementations introduce design elements that can benefit visualization developers. Conclusions: We describe a low-overhead approach that lets biologists access readily analyzed views of unfamiliar scientific datasets. We rely on pre-computed visualizations prepared by data experts, accompanied by sparse and intuitive interactions, and distributed via the familiar Google Maps framework. Our contributions are an evaluation demonstrating the validity and opportunities of this approach, a set of design guidelines benefiting those wanting to create such visualizations, and five concrete example visualizations.
Resumo:
The purpose of this research was to design and implement a Series of Latin Shows to be featured at the Satine Restaurant located in The Diplomat Hotel in Hollywood, Florida. Three shows were created: "Electro Tango," "Bossa Nova Jazz," and "Piel Canela Night" to help generate interest for not only the Satine Restaurant but also for the surrounding area. The artistic concept included big bands, costumes, dancers and a DJ. A production book was created and included the most important aspects of the individual shows such as budgets, costumes, and ground plans, to assure the success of each event. Careful analysis was done for the demographic area and a marketing plan was designed and implemented. The research and practical application of similar shows in the industry determined that the production of these particular shows, although costly, have a qualifiable chance to succeed in this venue.
Resumo:
Marine Areas for Responsible Artisanal Fishing (AMPR) have emerged as a new model for co-managing small-scale fisheries in Costa Rica, one that involves collaboration between fishers, government agencies and NGOs. This thesis aims to examine the context for collective action and co-management by small-scale fishers; evaluate the design, implementation, and enforcement of AMPRs; and conduct a linguistic analysis of fisheries legislation. The present work relies on the analysis of several types of qualitative data, including interviews with 23 key informants, rapid rural assessments, and legal documents. Findings demonstrate the strong influence of economic factors for sustaining collective action, as well as the importance of certain types of external organizations for community development and co-management. Additionally, significant enforcement gaps and institutional deficiencies were identified in the work of regulating agencies. Legal analysis suggests that mechanisms for government accountability are unavailable and that legal discourse reflects some of the most salient problems in management.
Resumo:
Database design is a difficult problem for non-expert designers. It is desirable to assist such designers during the problem solving process by means of a knowledge based (KB) system. A number of prototype KB systems have been proposed, however there are many shortcomings. Few have incorporated sufficient expertise in modeling relationships, particularly higher order relationships. There has been no empirical study that experimentally tested the effectiveness of any of these KB tools. Problem solving behavior of non-experts, whom the systems were intended to assist, has not been one of the bases for system design. In this project a consulting system for conceptual database design that addresses the above short comings was developed and empirically validated.^ The system incorporates (a) findings on why non-experts commit errors and (b) heuristics for modeling relationships. Two approaches to knowledge base implementation--system restrictiveness and decisional guidance--were used and compared in this project. The Restrictive approach is proscriptive and limits the designer's choices at various design phases by forcing him/her to follow a specific design path. The Guidance system approach which is less restrictive, provides context specific, informative and suggestive guidance throughout the design process. The main objectives of the study are to evaluate (1) whether the knowledge-based system is more effective than a system without the knowledge-base and (2) which knowledge implementation--restrictive or guidance--strategy is more effective. To evaluate the effectiveness of the knowledge base itself, the two systems were compared with a system that does not incorporate the expertise (Control).^ The experimental procedure involved the student subjects solving a task without using the system (pre-treatment task) and another task using one of the three systems (experimental task). The experimental task scores of those subjects who performed satisfactorily in the pre-treatment task were analyzed. Results are (1) The knowledge based approach to database design support lead to more accurate solutions than the control system; (2) No significant difference between the two KB approaches; (3) Guidance approach led to best performance; and (4) The subjects perceived the Restrictive system easier to use than the Guidance system. ^
Resumo:
The rapid growth of virtualized data centers and cloud hosting services is making the management of physical resources such as CPU, memory, and I/O bandwidth in data center servers increasingly important. Server management now involves dealing with multiple dissimilar applications with varying Service-Level-Agreements (SLAs) and multiple resource dimensions. The multiplicity and diversity of resources and applications are rendering administrative tasks more complex and challenging. This thesis aimed to develop a framework and techniques that would help substantially reduce data center management complexity.^ We specifically addressed two crucial data center operations. First, we precisely estimated capacity requirements of client virtual machines (VMs) while renting server space in cloud environment. Second, we proposed a systematic process to efficiently allocate physical resources to hosted VMs in a data center. To realize these dual objectives, accurately capturing the effects of resource allocations on application performance is vital. The benefits of accurate application performance modeling are multifold. Cloud users can size their VMs appropriately and pay only for the resources that they need; service providers can also offer a new charging model based on the VMs performance instead of their configured sizes. As a result, clients will pay exactly for the performance they are actually experiencing; on the other hand, administrators will be able to maximize their total revenue by utilizing application performance models and SLAs. ^ This thesis made the following contributions. First, we identified resource control parameters crucial for distributing physical resources and characterizing contention for virtualized applications in a shared hosting environment. Second, we explored several modeling techniques and confirmed the suitability of two machine learning tools, Artificial Neural Network and Support Vector Machine, to accurately model the performance of virtualized applications. Moreover, we suggested and evaluated modeling optimizations necessary to improve prediction accuracy when using these modeling tools. Third, we presented an approach to optimal VM sizing by employing the performance models we created. Finally, we proposed a revenue-driven resource allocation algorithm which maximizes the SLA-generated revenue for a data center.^
Resumo:
The deployment of wireless communications coupled with the popularity of portable devices has led to significant research in the area of mobile data caching. Prior research has focused on the development of solutions that allow applications to run in wireless environments using proxy based techniques. Most of these approaches are semantic based and do not provide adequate support for representing the context of a user (i.e., the interpreted human intention.). Although the context may be treated implicitly it is still crucial to data management. In order to address this challenge this dissertation focuses on two characteristics: how to predict (i) the future location of the user and (ii) locations of the fetched data where the queried data item has valid answers. Using this approach, more complete information about the dynamics of an application environment is maintained. ^ The contribution of this dissertation is a novel data caching mechanism for pervasive computing environments that can adapt dynamically to a mobile user's context. In this dissertation, we design and develop a conceptual model and context aware protocols for wireless data caching management. Our replacement policy uses the validity of the data fetched from the server and the neighboring locations to decide which of the cache entries is less likely to be needed in the future, and therefore a good candidate for eviction when cache space is needed. The context aware driven prefetching algorithm exploits the query context to effectively guide the prefetching process. The query context is defined using a mobile user's movement pattern and requested information context. Numerical results and simulations show that the proposed prefetching and replacement policies significantly outperform conventional ones. ^ Anticipated applications of these solutions include biomedical engineering, tele-health, medical information systems and business. ^
Resumo:
Database design is a difficult problem for non-expert designers. It is desirable to assist such designers during the problem solving process by means of a knowledge based (KB) system. Although a number of prototype KB systems have been proposed, there are many shortcomings. Firstly, few have incorporated sufficient expertise in modeling relationships, particularly higher order relationships. Secondly, there does not seem to be any published empirical study that experimentally tested the effectiveness of any of these KB tools. Thirdly, problem solving behavior of non-experts, whom the systems were intended to assist, has not been one of the bases for system design. In this project, a consulting system, called CODA, for conceptual database design that addresses the above short comings was developed and empirically validated. More specifically, the CODA system incorporates (a) findings on why non-experts commit errors and (b) heuristics for modeling relationships. Two approaches to knowledge base implementation were used and compared in this project, namely system restrictiveness and decisional guidance (Silver 1990). The Restrictive system uses a proscriptive approach and limits the designer's choices at various design phases by forcing him/her to follow a specific design path. The Guidance system approach, which is less restrictive, involves providing context specific, informative and suggestive guidance throughout the design process. Both the approaches would prevent erroneous design decisions. The main objectives of the study are to evaluate (1) whether the knowledge-based system is more effective than the system without a knowledge-base and (2) which approach to knowledge implementation - whether Restrictive or Guidance - is more effective. To evaluate the effectiveness of the knowledge base itself, the systems were compared with a system that does not incorporate the expertise (Control). An experimental procedure using student subjects was used to test the effectiveness of the systems. The subjects solved a task without using the system (pre-treatment task) and another task using one of the three systems, viz. Control, Guidance or Restrictive (experimental task). Analysis of experimental task scores of those subjects who performed satisfactorily in the pre-treatment task revealed that the knowledge based approach to database design support lead to more accurate solutions than the control system. Among the two KB approaches, Guidance approach was found to lead to better performance when compared to the Control system. It was found that the subjects perceived the Restrictive system easier to use than the Guidance system.
Resumo:
The rapid growth of virtualized data centers and cloud hosting services is making the management of physical resources such as CPU, memory, and I/O bandwidth in data center servers increasingly important. Server management now involves dealing with multiple dissimilar applications with varying Service-Level-Agreements (SLAs) and multiple resource dimensions. The multiplicity and diversity of resources and applications are rendering administrative tasks more complex and challenging. This thesis aimed to develop a framework and techniques that would help substantially reduce data center management complexity. We specifically addressed two crucial data center operations. First, we precisely estimated capacity requirements of client virtual machines (VMs) while renting server space in cloud environment. Second, we proposed a systematic process to efficiently allocate physical resources to hosted VMs in a data center. To realize these dual objectives, accurately capturing the effects of resource allocations on application performance is vital. The benefits of accurate application performance modeling are multifold. Cloud users can size their VMs appropriately and pay only for the resources that they need; service providers can also offer a new charging model based on the VMs performance instead of their configured sizes. As a result, clients will pay exactly for the performance they are actually experiencing; on the other hand, administrators will be able to maximize their total revenue by utilizing application performance models and SLAs. This thesis made the following contributions. First, we identified resource control parameters crucial for distributing physical resources and characterizing contention for virtualized applications in a shared hosting environment. Second, we explored several modeling techniques and confirmed the suitability of two machine learning tools, Artificial Neural Network and Support Vector Machine, to accurately model the performance of virtualized applications. Moreover, we suggested and evaluated modeling optimizations necessary to improve prediction accuracy when using these modeling tools. Third, we presented an approach to optimal VM sizing by employing the performance models we created. Finally, we proposed a revenue-driven resource allocation algorithm which maximizes the SLA-generated revenue for a data center.
Resumo:
Infrastructure systems are drivers of the economy in the nation. A dollar spent on infrastructure development yields roughly double the initial spending in ultimate economic output in the short term; and over a twenty-year period, and generalized ‘public investment’ produces an aggregated $3.21 of economic activity per $1.00 spent [1]. Thus, formulation of policies pertaining to infrastructure investment and development is of significance affecting the social and economic wellbeing of the nation. The aim of this policy brief is to evaluate innovative financing in infrastructure systems from two different perspectives: (1) through consideration of the current condition of infrastructure in the U.S., the current trends in public spending, and the emerging innovative financing tools; (2) through evaluation of the roles and interactions of different agencies in the creation and the diffusion of innovative financing tools. Then using the example of transportation financing, the policy brief provides an assessment of policy landscapes which could lead to the closure of infrastructure financing gap in the U.S and proposes strategies for citizen involvement to gain public support of innovative financing.
Resumo:
The Semantic Binary Data Model (SBM) is a viable alternative to the now-dominant relational data model. SBM would be especially advantageous for applications dealing with complex interrelated networks of objects provided that a robust efficient implementation can be achieved. This dissertation presents an implementation design method for SBM, algorithms, and their analytical and empirical evaluation. Our method allows building a robust and flexible database engine with a wider applicability range and improved performance. ^ Extensions to SBM are introduced and an implementation of these extensions is proposed that allows the database engine to efficiently support applications with a predefined set of queries. A New Record data structure is proposed. Trade-offs of employing Fact, Record and Bitmap Data structures for storing information in a semantic database are analyzed. ^ A clustering ID distribution algorithm and an efficient algorithm for object ID encoding are proposed. Mapping to an XML data model is analyzed and a new XML-based XSDL language facilitating interoperability of the system is defined. Solutions to issues associated with making the database engine multi-platform are presented. An improvement to the atomic update algorithm suitable for certain scenarios of database recovery is proposed. ^ Specific guidelines are devised for implementing a robust and well-performing database engine based on the extended Semantic Data Model. ^
Resumo:
An implementation of Sem-ODB—a database management system based on the Semantic Binary Model is presented. A metaschema of Sem-ODB database as well as the top-level architecture of the database engine is defined. A new benchmarking technique is proposed which allows databases built on different database models to compete fairly. This technique is applied to show that Sem-ODB has excellent efficiency comparing to a relational database on a certain class of database applications. A new semantic benchmark is designed which allows evaluation of the performance of the features characteristic of semantic database applications. An application used in the benchmark represents a class of problems requiring databases with sparse data, complex inheritances and many-to-many relations. Such databases can be naturally accommodated by semantic model. A fixed predefined implementation is not enforced allowing the database designer to choose the most efficient structures available in the DBMS tested. The results of the benchmark are analyzed. ^ A new high-level querying model for semantic databases is defined. It is proven adequate to serve as an efficient native semantic database interface, and has several advantages over the existing interfaces. It is optimizable and parallelizable, supports the definition of semantic userviews and the interoperability of semantic databases with other data sources such as World Wide Web, relational, and object-oriented databases. The query is structured as a semantic database schema graph with interlinking conditionals. The query result is a mini-database, accessible in the same way as the original database. The paradigm supports and utilizes the rich semantics and inherent ergonomics of semantic databases. ^ The analysis and high-level design of a system that exploits the superiority of the Semantic Database Model to other data models in expressive power and ease of use to allow uniform access to heterogeneous data sources such as semantic databases, relational databases, web sites, ASCII files, and others via a common query interface is presented. The Sem-ODB engine is used to control all the data sources combined under a unified semantic schema. A particular application of the system to provide an ODBC interface to the WWW as a data source is discussed. ^
Resumo:
Next-generation integrated wireless local area network (WLAN) and 3G cellular networks aim to take advantage of the roaming ability in a cellular network and the high data rate services of a WLAN. To ensure successful implementation of an integrated network, many issues must be carefully addressed, including network architecture design, resource management, quality-of-service (QoS), call admission control (CAC) and mobility management. ^ This dissertation focuses on QoS provisioning, CAC, and the network architecture design in the integration of WLANs and cellular networks. First, a new scheduling algorithm and a call admission control mechanism in IEEE 802.11 WLAN are presented to support multimedia services with QoS provisioning. The proposed scheduling algorithms make use of the idle system time to reduce the average packet loss of realtime (RT) services. The admission control mechanism provides long-term transmission quality for both RT and NRT services by ensuring the packet loss ratio for RT services and the throughput for non-real-time (NRT) services. ^ A joint CAC scheme is proposed to efficiently balance traffic load in the integrated environment. A channel searching and replacement algorithm (CSR) is developed to relieve traffic congestion in the cellular network by using idle channels in the WLAN. The CSR is optimized to minimize the system cost in terms of the blocking probability in the interworking environment. Specifically, it is proved that there exists an optimal admission probability for passive handoffs that minimizes the total system cost. Also, a method of searching the probability is designed based on linear-programming techniques. ^ Finally, a new integration architecture, Hybrid Coupling with Radio Access System (HCRAS), is proposed for lowering the average cost of intersystem communication (IC) and the vertical handoff latency. An analytical model is presented to evaluate the system performance of the HCRAS in terms of the intersystem communication cost function and the handoff cost function. Based on this model, an algorithm is designed to determine the optimal route for each intersystem communication. Additionally, a fast handoff algorithm is developed to reduce the vertical handoff latency.^
Resumo:
This dissertation established a software-hardware integrated design for a multisite data repository in pediatric epilepsy. A total of 16 institutions formed a consortium for this web-based application. This innovative fully operational web application allows users to upload and retrieve information through a unique human-computer graphical interface that is remotely accessible to all users of the consortium. A solution based on a Linux platform with My-SQL and Personal Home Page scripts (PHP) has been selected. Research was conducted to evaluate mechanisms to electronically transfer diverse datasets from different hospitals and collect the clinical data in concert with their related functional magnetic resonance imaging (fMRI). What was unique in the approach considered is that all pertinent clinical information about patients is synthesized with input from clinical experts into 4 different forms, which were: Clinical, fMRI scoring, Image information, and Neuropsychological data entry forms. A first contribution of this dissertation was in proposing an integrated processing platform that was site and scanner independent in order to uniformly process the varied fMRI datasets and to generate comparative brain activation patterns. The data collection from the consortium complied with the IRB requirements and provides all the safeguards for security and confidentiality requirements. An 1-MR1-based software library was used to perform data processing and statistical analysis to obtain the brain activation maps. Lateralization Index (LI) of healthy control (HC) subjects in contrast to localization-related epilepsy (LRE) subjects were evaluated. Over 110 activation maps were generated, and their respective LIs were computed yielding the following groups: (a) strong right lateralization: (HC=0%, LRE=18%), (b) right lateralization: (HC=2%, LRE=10%), (c) bilateral: (HC=20%, LRE=15%), (d) left lateralization: (HC=42%, LRE=26%), e) strong left lateralization: (HC=36%, LRE=31%). Moreover, nonlinear-multidimensional decision functions were used to seek an optimal separation between typical and atypical brain activations on the basis of the demographics as well as the extent and intensity of these brain activations. The intent was not to seek the highest output measures given the inherent overlap of the data, but rather to assess which of the many dimensions were critical in the overall assessment of typical and atypical language activations with the freedom to select any number of dimensions and impose any degree of complexity in the nonlinearity of the decision space.
Resumo:
With the proliferation of multimedia data and ever-growing requests for multimedia applications, there is an increasing need for efficient and effective indexing, storage and retrieval of multimedia data, such as graphics, images, animation, video, audio and text. Due to the special characteristics of the multimedia data, the Multimedia Database management Systems (MMDBMSs) have emerged and attracted great research attention in recent years. Though much research effort has been devoted to this area, it is still far from maturity and there exist many open issues. In this dissertation, with the focus of addressing three of the essential challenges in developing the MMDBMS, namely, semantic gap, perception subjectivity and data organization, a systematic and integrated framework is proposed with video database and image database serving as the testbed. In particular, the framework addresses these challenges separately yet coherently from three main aspects of a MMDBMS: multimedia data representation, indexing and retrieval. In terms of multimedia data representation, the key to address the semantic gap issue is to intelligently and automatically model the mid-level representation and/or semi-semantic descriptors besides the extraction of the low-level media features. The data organization challenge is mainly addressed by the aspect of media indexing where various levels of indexing are required to support the diverse query requirements. In particular, the focus of this study is to facilitate the high-level video indexing by proposing a multimodal event mining framework associated with temporal knowledge discovery approaches. With respect to the perception subjectivity issue, advanced techniques are proposed to support users' interaction and to effectively model users' perception from the feedback at both the image-level and object-level.