6 resultados para Cutoff Resolvent
em Digital Commons at Florida International University
Resumo:
Studies have shown that the environmental conditions of the home are important predictors of health, especially in low-income communities. Understanding the relationship between the environment and health is crucial in the management of certain diseases. One health outcome related to the home environment among urban, minority, and low-income children is childhood lead poisoning. The most common sources of lead exposure for children are lead paint in older, dilapidated housing and contaminated dust and soil produced by accumulated residue of leaded gasoline. Blood lead levels (BLL) as low as 10 μg/dL in children are associated with impaired cognitive function, behavior difficulties, and reduced intelligence. Recently, it is suggested that the standard for intervention be lowered to BLL of 5 μg /dl. The objectives of our report were to assess the prevalence of lead poisoning among children under six years of age and to quantify and test the correlations between BLL in children and lead exposure levels in their environment. This cross-sectional analysis was restricted to 75 children under six years of age who lived in 6 zip code areas of inner city Miami. These locations exhibited unacceptably high levels of lead dust and soil in areas where children live and play. Using the 5 μg/dL as the cutoff point, the prevalence of lead poisoning among the study sample was 13.33%. The study revealed that lead levels in floor dust and window sill samples were positively and significantly correlated with BLL among children (p < 0.05). However, the correlations between BLL and the soil, air, and water samples were not significant. Based on this pilot study, a more comprehensive environmental study in surrounding inner city areas is warranted. Parental education on proper housecleaning techniques may also benefit those living in the high lead-exposed communities of inner city Miami.
Resumo:
This dissertation describes the findings and implications of a correlational analysis. Scores earned on the Computerized Placement Test (CPT), sentence skills, were compared to essay scores of advanced English as a Second Language (ESL) students. As the CPT is designed for native speakers of English, it was hypothesized that it could be an invalid or unreliable instrument for non-native speakers. Florida community college students are mandated to take the CPT to determine preparedness, as are students at many other U.S. and Canadian colleges. If incoming students score low on the CPT, they may be required to take up to three semesters of remedial coursework. It is essential that scores earned by non-native speakers of English accurately reflect their ability level. They constitute a large and growing body of non-traditional students enrolled at community colleges.^ The study was conducted at Miami-Dade Community College, Wolfson Campus, fall 1997. Participants included 106 advanced ESL students who took both the CPT sentence skills test and wrote final essay exams. The essay exams were holistically scored by trained readers. Also, the participants took the Placement Articulation Software Service (PASS) exam, an alternative form of the CPT. Scores on the CPT and essays were compared by means of a Pearson product-moment correlation to validate the CPT. Scores on the CPT and the PASS exam were compared in the same manner to verify reliability. A percentage of appropriate placements was determined by comparing essay scores to CPT cutoff score ranges. Finally, the instruments were evaluated by means of independent-samples t-tests for performance differences between gender, age, and first language groups.^ The results indicate that the CPT sentence skills test is a valid and reliable placement instrument for advanced- level ESL students who intend to pursue community college degrees. The correlations demonstrated a substantial relationship between CPT and essay scores and a marked relationship between CPT and PASS scores. Appropriate placements were made in 86% of the cases. Furthermore, the CPT was found to discriminate equally among the gender, age, and first language groups included in this study. ^
Resumo:
Most experiments in particle physics are scattering experiments, the analysis of which leads to masses, scattering phases, decay widths and other properties of one or multi-particle systems. Until the advent of Lattice Quantum Chromodynamics (LQCD) it was difficult to compare experimental results on low energy hadron-hadron scattering processes to the predictions of QCD, the current theory of strong interactions. The reason being, at low energies the QCD coupling constant becomes large and the perturbation expansion for scattering; amplitudes does not converge. To overcome this, one puts the theory onto a lattice, imposes a momentum cutoff, and computes the integral numerically. For particle masses, predictions of LQCD agree with experiment, but the area of decay widths is largely unexplored. ^ LQCD provides ab initio access to unusual hadrons like exotic mesons that are predicted to contain real gluonic structure. To study decays of these type resonances the energy spectra of a two-particle decay state in a finite volume of dimension L can be related to the associated scattering phase shift δ(k) at momentum k through exact formulae derived by Lüscher. Because the spectra can be computed using numerical Monte Carlo techniques, the scattering phases can thus be determined using Lüscher's formulae, and the corresponding decay widths can be found by fitting Breit-Wigner functions. ^ Results of such a decay width calculation for an exotic hybrid( h) meson (JPC = 1-+) are presented for the decay channel h → πa 1. This calculation employed Lüscher's formulae and an approximation of LQCD called the quenched approximation. Energy spectra for the h and πa1 systems were extracted using eigenvalues of a correlation matrix, and the corresponding scattering phase shifts were determined for a discrete set of πa1 momenta. Although the number of phase shift data points was sparse, fits to a Breit-Wigner model were made, resulting in a decay width of about 60 MeV. ^
Resumo:
Today's young people are progressing from adolescence into adulthood differently than past generations, including taking a longer time to make this transition. Some believe that the developmental markers and tasks of this transitional period are unique enough to merit the designation of a new life stage--"emerging adulthood." Recently, this new life stage of emerging adulthood has received increasing attention in the developmental literature, including attention to the probable causes for its evolution. However, little is known about specific aspects of intra- and interpersonal development that occur during emerging adulthood. The purpose of this study was to empirically assess hypothesized relations between variables associated with the psychological constructs of attachment, psychosocial maturity, and differentiation of self, in a sample of emerging adults. Structural equation modeling (SEM) analyses indicated an association between the variables measuring these constructs (anxiety, avoidance, I-position, reactivity, cutoff, fusion, identity, and intimacy). The results from structural equation modeling (SEM) analyses helped to confirmed and extended previous research by demonstrating significant associations between attachment, psychosocial maturity, and differentiation of self through the variables operationalizing these constructs. Psychosocial maturity predicted differentiation of self (with intimacy predicting emotional cutoff and identity predicting cutoff and I-position). Attachment also predicted differentiation of self (with anxiety predicting all differentiation variables, and avoidance predicting emotional reactivity and cutoff). However, associations between anxiety and cutoff and between avoidance and cutoff were mediated by psychosocial identity and intimacy, and associations between anxiety and I-position were mediated by identity. Thus, these results corroborate and elaborate previous research conducted on these constructs. Specifically, relational tendencies thought to be influenced by attachment security impact interpersonal functioning in emerging adulthood, but this association is influenced by the degree of resolution of key psychosocial tasks.
Resumo:
Reduced organic sulfur (ROS) compounds are environmentally ubiquitous and play an important role in sulfur cycling as well as in biogeochemical cycles of toxic metals, in particular mercury. Development of effective methods for analysis of ROS in environmental samples and investigations on the interactions of ROS with mercury are critical for understanding the role of ROS in mercury cycling, yet both of which are poorly studied. Covalent affinity chromatography-based methods were attempted for analysis of ROS in environmental water samples. A method was developed for analysis of environmental thiols, by preconcentration using affinity covalent chromatographic column or solid phase extraction, followed by releasing of thiols from the thiopropyl sepharose gel using TCEP and analysis using HPLC-UV or HPLC-FL. Under the optimized conditions, the detection limits of the method using HPLC-FL detection were 0.45 and 0.36 nM for Cys and GSH, respectively. Our results suggest that covalent affinity methods are efficient for thiol enrichment and interference elimination, demonstrating their promising applications in developing a sensitive, reliable, and useful technique for thiol analysis in environmental water samples. The dissolution of mercury sulfide (HgS) in the presence of ROS and dissolved organic matter (DOM) was investigated, by quantifying the effects of ROS on HgS dissolution and determining the speciation of the mercury released from ROS-induced HgS dissolution. It was observed that the presence of small ROS (e.g., Cys and GSH) and large molecule DOM, in particular at high concentrations, could significantly enhance the dissolution of HgS. The dissolved Hg during HgS dissolution determined using the conventional 0.22 μm cutoff method could include colloidal Hg (e.g., HgS colloids) and truly dissolved Hg (e.g., Hg-ROS complexes). A centrifugal filtration method (with 3 kDa MWCO) was employed to characterize the speciation and reactivity of the Hg released during ROS-enhanced HgS dissolution. The presence of small ROS could produce a considerable fraction (about 40% of total mercury in the solution) of truly dissolved mercury (< 3 kDa), probably due to the formation of Hg-Cys or Hg-GSH complexes. The truly dissolved Hg formed during GSH- or Cys-enhanced HgS dissolution was directly reducible (100% for GSH and 40% for Cys) by stannous chloride, demonstrating its potential role in Hg transformation and bioaccumulation.
Resumo:
OBJECTIVE: To evaluate the validity of hemoglobin A1C (A1C) as a diagnostic tool for type 2 diabetes and to determine the most appropriate A1C cutoff point for diagnosis in a sample of Haitian-Americans. SUBJECTS AND METHODS: Subjects (n = 128) were recruited from Miami-Dade and Broward counties, FL. Receiver operating characteristics (ROC) analysis was run in order to measure sensitivity and specificity of A1C for detecting diabetes at different cutoff points. RESULTS: The area under the ROC curve was 0.86 using fasting plasma glucose ≥ 7.0 mmol/L as the gold standard. An A1C cutoff point of 6.26% had sensitivity of 80% and specificity of 74%, whereas an A1C cutoff point of 6.50% (recommended by the American Diabetes Association – ADA) had sensitivity of 73% and specificity of 89%. CONCLUSIONS: A1C is a reliable alternative to fasting plasma glucose in detecting diabetes in this sample of Haitian-Americans. A cutoff point of 6.26% was the optimum value to detect type 2 diabetes.