8 resultados para Customer order decoupling point
em Digital Commons at Florida International University
Resumo:
This research is motivated by the need for considering lot sizing while accepting customer orders in a make-to-order (MTO) environment, in which each customer order must be delivered by its due date. Job shop is the typical operation model used in an MTO operation, where the production planner must make three concurrent decisions; they are order selection, lot size, and job schedule. These decisions are usually treated separately in the literature and are mostly led to heuristic solutions. The first phase of the study is focused on a formal definition of the problem. Mathematical programming techniques are applied to modeling this problem in terms of its objective, decision variables, and constraints. A commercial solver, CPLEX is applied to solve the resulting mixed-integer linear programming model with small instances to validate the mathematical formulation. The computational result shows it is not practical for solving problems of industrial size, using a commercial solver. The second phase of this study is focused on development of an effective solution approach to this problem of large scale. The proposed solution approach is an iterative process involving three sequential decision steps of order selection, lot sizing, and lot scheduling. A range of simple sequencing rules are identified for each of the three subproblems. Using computer simulation as the tool, an experiment is designed to evaluate their performance against a set of system parameters. For order selection, the proposed weighted most profit rule performs the best. The shifting bottleneck and the earliest operation finish time both are the best scheduling rules. For lot sizing, the proposed minimum cost increase heuristic, based on the Dixon-Silver method performs the best, when the demand-to-capacity ratio at the bottleneck machine is high. The proposed minimum cost heuristic, based on the Wagner-Whitin algorithm is the best lot-sizing heuristic for shops of a low demand-to-capacity ratio. The proposed heuristic is applied to an industrial case to further evaluate its performance. The result shows it can improve an average of total profit by 16.62%. This research contributes to the production planning research community with a complete mathematical definition of the problem and an effective solution approach to solving the problem of industry scale.
Resumo:
The increasing emphasis on mass customization, shortened product lifecycles, synchronized supply chains, when coupled with advances in information system, is driving most firms towards make-to-order (MTO) operations. Increasing global competition, lower profit margins, and higher customer expectations force the MTO firms to plan its capacity by managing the effective demand. The goal of this research was to maximize the operational profits of a make-to-order operation by selectively accepting incoming customer orders and simultaneously allocating capacity for them at the sales stage. ^ For integrating the two decisions, a Mixed-Integer Linear Program (MILP) was formulated which can aid an operations manager in an MTO environment to select a set of potential customer orders such that all the selected orders are fulfilled by their deadline. The proposed model combines order acceptance/rejection decision with detailed scheduling. Experiments with the formulation indicate that for larger problem sizes, the computational time required to determine an optimal solution is prohibitive. This formulation inherits a block diagonal structure, and can be decomposed into one or more sub-problems (i.e. one sub-problem for each customer order) and a master problem by applying Dantzig-Wolfe’s decomposition principles. To efficiently solve the original MILP, an exact Branch-and-Price algorithm was successfully developed. Various approximation algorithms were developed to further improve the runtime. Experiments conducted unequivocally show the efficiency of these algorithms compared to a commercial optimization solver.^ The existing literature addresses the static order acceptance problem for a single machine environment having regular capacity with an objective to maximize profits and a penalty for tardiness. This dissertation has solved the order acceptance and capacity planning problem for a job shop environment with multiple resources. Both regular and overtime resources is considered. ^ The Branch-and-Price algorithms developed in this dissertation are faster and can be incorporated in a decision support system which can be used on a daily basis to help make intelligent decisions in a MTO operation.^
Resumo:
The increasing emphasis on mass customization, shortened product lifecycles, synchronized supply chains, when coupled with advances in information system, is driving most firms towards make-to-order (MTO) operations. Increasing global competition, lower profit margins, and higher customer expectations force the MTO firms to plan its capacity by managing the effective demand. The goal of this research was to maximize the operational profits of a make-to-order operation by selectively accepting incoming customer orders and simultaneously allocating capacity for them at the sales stage. For integrating the two decisions, a Mixed-Integer Linear Program (MILP) was formulated which can aid an operations manager in an MTO environment to select a set of potential customer orders such that all the selected orders are fulfilled by their deadline. The proposed model combines order acceptance/rejection decision with detailed scheduling. Experiments with the formulation indicate that for larger problem sizes, the computational time required to determine an optimal solution is prohibitive. This formulation inherits a block diagonal structure, and can be decomposed into one or more sub-problems (i.e. one sub-problem for each customer order) and a master problem by applying Dantzig-Wolfe’s decomposition principles. To efficiently solve the original MILP, an exact Branch-and-Price algorithm was successfully developed. Various approximation algorithms were developed to further improve the runtime. Experiments conducted unequivocally show the efficiency of these algorithms compared to a commercial optimization solver. The existing literature addresses the static order acceptance problem for a single machine environment having regular capacity with an objective to maximize profits and a penalty for tardiness. This dissertation has solved the order acceptance and capacity planning problem for a job shop environment with multiple resources. Both regular and overtime resources is considered. The Branch-and-Price algorithms developed in this dissertation are faster and can be incorporated in a decision support system which can be used on a daily basis to help make intelligent decisions in a MTO operation.
Resumo:
An assessment tool designed to measure a customer service orientation among RN's and LPN's was developed using a content-oriented approach. Critical incidents were first developed by asking two samples of healthcare managers (n = 52 and 25) to identify various customer-contact situations. The critical incidents were then used to formulate a 121-item instrument. Patient-contact workers from 3 hospitals (n = 102) completed the instrument along with the NEO-FFI, a measure of the Big Five personality factors. Concurrently, managers completed a performance evaluation scale on the employees participating in the study in order to determine the predictive validity of the instrument.^ Through a criterion-keying approach, the instrument was scaled down to 38 items. The correlation between HealthServe and the supervisory ratings of performance evaluation data supported the instrument's criterion-related validity (r =.66, p $<$.0001). Incremental validity of HealthServe over the Big Five was found with HealthServe accounting for 46% of the variance.^ The NEO-FFI was used to assess the correlation between personality traits and HealthServe. A factor analysis of HealthServe suggested 4 factors which were correlated with the NEO-FFI scores. Results indicated that HealthServe was related to Extraversion, Openness to Experience, Agreeableness, Conscientiousness and negatively related to Neuroticism.^ The benefits of the test construction procedure used here over the use of broad-based measures of personality were discussed as well as the limitations of using a concurrent validation strategy. Recommendations for future studies were provided. ^
Resumo:
This dissertation is a study of customer relationship management theory and practice. Customer Relationship Management (CRM) is a business strategy whereby companies build strong relationships with existing and prospective customers with the goal of increasing organizational profitability. It is also a learning process involving managing change in processes, people, and technology. CRM implementation and its ramifications are also not completely understood as evidenced by the high number of failures in CRM implementation in organizations and the resulting disappointments. ^ The goal of this dissertation is to study emerging issues and trends in CRM, including the effect of computer software and the accompanying new management processes on organizations, and the dynamics of the alignment of marketing, sales and services, and all other functions responsible for delivering customers a satisfying experience. ^ In order to understand CRM better a content analysis of more than a hundred articles and documents from academic and industry sources was undertaken using a new methodological twist to the traditional method. An Internet domain name (http://crm.fiu.edu) was created for the purpose of this research by uploading an initial one hundred plus abstracts of articles and documents onto it to form a knowledge database. Once the database was formed a search engine was developed to enable the search of abstracts using relevant CRM keywords to reveal emergent dominant CRM topics. The ultimate aim of this website is to serve as an information hub for CRM research, as well as a search engine where interested parties can enter CRM-relevant keywords or phrases to access abstracts, as well as submit abstracts to enrich the knowledge hub. ^ Research questions were investigated and answered by content analyzing the interpretation and discussion of dominant CRM topics and then amalgamating the findings. This was supported by comparisons within and across individual, paired, and sets-of-three occurrences of CRM keywords in the article abstracts. ^ Results show that there is a lack of holistic thinking and discussion of CRM in both academics and industry which is required to understand how the people, process, and technology in CRM impact each other to affect successful implementation. Industry has to get their heads around CRM and holistically understand how these important dimensions affect each other. Only then will organizational learning occur, and overtime result in superior processes leading to strong profitable customer relationships and a hard to imitate competitive advantage. ^
Resumo:
The current exploratory study was designed to determine the impact that green restaurant practices may have on intention to visit a restaurant and willingness to pay more because of those green practices. The study analyzed a convenience sample of 260 surveys from customers in fast food restaurants and 501 surveys from customers in upscale casual restaurants in the Midwestern United States (U.S.) in order to determine if there were differences in the perception of guests regarding these types of restaurants and their green practices. The findings showed that upscale casual restaurant customers believed they are knowledgeable at a higher level than the fast food restaurant customers about green restaurant practices, have a higher mean rating on the importance of environmental record and recycling in restaurants, and believed that restaurants should use local products when they can. In both groups of customers, there was a positive relationship between green practices utilized at home and customers’ willingness to pay more for green restaurant practices as well as their intention to visit the restaurant using green practices. Management implications are discussed.
Resumo:
Marketing strategies addressing underserved African American wine customers’ needs that also positively impact producers’ and retailers’ clientele was the impetus for this exploratory, qualitative paper. African Americans demonstrate a thirst to elevate their education about and be more involved in the wine industry as evidenced by the proliferation of African American wine-tasting groups designed to help educate and expose their membership to a variety of wines. Moreover, compared to the average adult, African-American wine drinkers are 241% more likely to have spent $20 or more on a bottle of store bought wine (Arbitron, 2005). Despite African Americans’ representation as one of the fastest growing ethnic minority segments in the U.S., wine industry strategies don't appear to connect with this market segment. Like Alice in Wonderland, we characterize this phenomenon by suggesting this market segment is ‘peering through the looking glass’. Three focus groups were conducted to specify possible targeted media strategies as well as to identify attitudes and opinions that influence this segment's wine purchasing and consumption behaviors. Industry strategies were suggested that would appear to benefit producers, retailers, and this customer segment. The results of the research will be used to inform a quantitative instrument in order to generalize findings beyond the context of the exploratory setting.
Resumo:
Secrecy is fundamental to computer security, but real systems often cannot avoid leaking some secret information. For this reason, the past decade has seen growing interest in quantitative theories of information flow that allow us to quantify the information being leaked. Within these theories, the system is modeled as an information-theoretic channel that specifies the probability of each output, given each input. Given a prior distribution on those inputs, entropy-like measures quantify the amount of information leakage caused by the channel. ^ This thesis presents new results in the theory of min-entropy leakage. First, we study the perspective of secrecy as a resource that is gradually consumed by a system. We explore this intuition through various models of min-entropy consumption. Next, we consider several composition operators that allow smaller systems to be combined into larger systems, and explore the extent to which the leakage of a combined system is constrained by the leakage of its constituents. Most significantly, we prove upper bounds on the leakage of a cascade of two channels, where the output of the first channel is used as input to the second. In addition, we show how to decompose a channel into a cascade of channels. ^ We also establish fundamental new results about the recently-proposed g-leakage family of measures. These results further highlight the significance of channel cascading. We prove that whenever channel A is composition refined by channel B, that is, whenever A is the cascade of B and R for some channel R, the leakage of A never exceeds that of B, regardless of the prior distribution or leakage measure (Shannon leakage, guessing entropy leakage, min-entropy leakage, or g-leakage). Moreover, we show that composition refinement is a partial order if we quotient away channel structure that is redundant with respect to leakage alone. These results are strengthened by the proof that composition refinement is the only way for one channel to never leak more than another with respect to g-leakage. Therefore, composition refinement robustly answers the question of when a channel is always at least as secure as another from a leakage point of view.^