6 resultados para Critical Film Thickness
em Digital Commons at Florida International University
Resumo:
In this study, the formation of stripe domains in permalloy (NisoFe20) thin films was investigated mainly utilizing magnetic force microscopy. Stripe domains are a known phenomenon, which reduces the "softness" of magnetic material and introduces a significant source of noise when used in perpendicular magnetic media. For the particular setup mentioned in this report, a critical thickness for stripe domains initiation depended on the sputtering rate, the substrate temperature, and the film thickness. Beyond the stripe domain formation, an increase in the periodicity of highly ordered stripe domains was evident with increasing film thickness. Above a particular thickness, stripe domains periodicity decreased along with magnetic domain randomization. The results led to the inference that the perpendicular anisotropy responsible for the formation of stripe domains originated mainly from magnetostriction.
Resumo:
Aerospace turboengines present a demanding challenge to many heat transfer scientists and engineers. Designers in this field are seeking the best design to transform the chemical energy of the fuel into the useful work of propulsive thrust at maximum efficiency. To this aim, aerospace turboengines must operate at very high temperatures and pressures with very little heat losses. These requirements are often in conflict with the ability to protect the turboengine blades from this hostile thermal environment. Heat pipe technology provides a potential cooling means for the structure exposed to high heat fluxes. Therefore, the objective of this dissertation is to develop a new radially rotating miniature heat pipe, which would combine the traditional air-cooling technology with the heat pipe for more effective turboengine blade cooling. ^ In this dissertation, radially rotating miniature heat pipes are analyzed and studied by employing appropriate flow and heat transfer modeling as well as experimental tests. The analytical solutions for the flows of condensate film and vapor, film thickness, and vapor temperature distribution along the heat pipe length are derived. The diffuse effects of non-condensable gases on the temperature distribution along the heat pipe length are also studied, and the analytical solutions for the temperature distributions with the diffuse effects of non-condensable gases are obtained. Extensive experimental tests on radially rotating miniature heat pipes with different influential parameters are undertaken, and various effects of these parameters on the operation of the heat pipe performance are researched. These analytical solutions are in good agreement with the experimental data. ^ The theoretical and experimental studies have proven that the radially rotating miniature heat pipe has a very large heat transfer capability and a very high effective thermal conductance that is 60–100 times higher than the thermal conductivity of copper. At the same time, the heat pipe has a simple structure and low manufacturing cost, and can withstand strong vibrations and work in a high-temperature environment. Therefore, the combination of the traditional air-cooling technology with the radially rotating miniature heat pipe is a feasible and effective cooling means for high-temperature turbine blades. ^
Tubular and sector heat pipes with interconnected branches for gas turbine and/or compressor cooling
Resumo:
Designing turbines for either aerospace or power production is a daunting task for any heat transfer scientist or engineer. Turbine designers are continuously pursuing better ways to convert the stored chemical energy in the fuel into useful work with maximum efficiency. Based on thermodynamic principles, one way to improve thermal efficiency is to increase the turbine inlet pressure and temperature. Generally, the inlet temperature may exceed the capabilities of standard materials for safe and long-life operation of the turbine. Next generation propulsion systems, whether for new supersonic transport or for improving existing aviation transport, will require more aggressive cooling system for many hot-gas-path components of the turbine. Heat pipe technology offers a possible cooling technique for the structures exposed to the high heat fluxes. Hence, the objective of this dissertation is to develop new radially rotating heat pipe systems that integrate multiple rotating miniature heat pipes with a common reservoir for a more effective and practical solution to turbine or compressor cooling. In this dissertation, two radially rotating miniature heat pipes and two sector heat pipes are analyzed and studied by utilizing suitable fluid flow and heat transfer modeling along with experimental tests. Analytical solutions for the film thickness and the lengthwise vapor temperature distribution for a single heat pipe are derived. Experimental tests on single radially rotating miniature heat pipes and sector heat pipes are undertaken with different important parameters and the manner in which these parameters affect heat pipe operation. Analytical and experimental studies have proven that the radially rotating miniature heat pipes have an incredibly high effective thermal conductance and an enormous heat transfer capability. Concurrently, the heat pipe has an uncomplicated structure and relatively low manufacturing costs. The heat pipe can also resist strong vibrations and is well suited for a high temperature environment. Hence, the heat pipes with a common reservoir make incorporation of heat pipes into turbo-machinery much more feasible and cost effective.
Tubular and Sector Heat Pipes with Interconnected Branches for Gas Turbine and/or Compressor Cooling
Resumo:
Designing turbines for either aerospace or power production is a daunting task for any heat transfer scientist or engineer. Turbine designers are continuously pursuing better ways to convert the stored chemical energy in the fuel into useful work with maximum efficiency. Based on thermodynamic principles, one way to improve thermal efficiency is to increase the turbine inlet pressure and temperature. Generally, the inlet temperature may exceed the capabilities of standard materials for safe and long-life operation of the turbine. Next generation propulsion systems, whether for new supersonic transport or for improving existing aviation transport, will require more aggressive cooling system for many hot-gas-path components of the turbine. Heat pipe technology offers a possible cooling technique for the structures exposed to the high heat fluxes. Hence, the objective of this dissertation is to develop new radially rotating heat pipe systems that integrate multiple rotating miniature heat pipes with a common reservoir for a more effective and practical solution to turbine or compressor cooling. In this dissertation, two radially rotating miniature heat pipes and two sector heat pipes are analyzed and studied by utilizing suitable fluid flow and heat transfer modeling along with experimental tests. Analytical solutions for the film thickness and the lengthwise vapor temperature distribution for a single heat pipe are derived. Experimental tests on single radially rotating miniature heat pipes and sector heat pipes are undertaken with different important parameters and the manner in which these parameters affect heat pipe operation. Analytical and experimental studies have proven that the radially rotating miniature heat pipes have an incredibly high effective thermal conductance and an enormous heat transfer capability. Concurrently, the heat pipe has an uncomplicated structure and relatively low manufacturing costs. The heat pipe can also resist strong vibrations and is well suited for a high temperature environment. Hence, the heat pipes with a common reservoir make incorporation of heat pipes into turbo-machinery much more feasible and cost effective.
Resumo:
In 1972 the ionized cluster beam (ICB) deposition technique was introduced as a new method for thin film deposition. At that time the use of clusters was postulated to be able to enhance film nucleation and adatom surface mobility, resulting in high quality films. Although a few researchers reported singly ionized clusters containing 10$\sp2$-10$\sp3$ atoms, others were unable to repeat their work. The consensus now is that film effects in the early investigations were due to self-ion bombardment rather than clusters. Subsequently in recent work (early 1992) synthesis of large clusters of zinc without the use of a carrier gas was demonstrated by Gspann and repeated in our laboratory. Clusters resulted from very significant changes in two source parameters. Crucible pressure was increased from the earlier 2 Torr to several thousand Torr and a converging-diverging nozzle 18 mm long and 0.4 mm in diameter at the throat was used in place of the 1 mm x 1 mm nozzle used in the early work. While this is practical for zinc and other high vapor pressure materials it remains impractical for many materials of industrial interest such as gold, silver, and aluminum. The work presented here describes results using gold and silver at pressures of around 1 and 50 Torr in order to study the effect of the pressure and nozzle shape. Significant numbers of large clusters were not detected. Deposited films were studied by atomic force microscopy (AFM) for roughness analysis, and X-ray diffraction.^ Nanometer size islands of zinc deposited on flat silicon substrates by ICB were also studied by atomic force microscopy and the number of atoms/cm$\sp2$ was calculated and compared to data from Rutherford backscattering spectrometry (RBS). To improve the agreement between data from AFM and RBS, convolution and deconvolution algorithms were implemented to study and simulate the interaction between tip and sample in atomic force microscopy. The deconvolution algorithm takes into account the physical volume occupied by the tip resulting in an image that is a more accurate representation of the surface.^ One method increasingly used to study the deposited films both during the growth process and following, is ellipsometry. Ellipsometry is a surface analytical technique used to determine the optical properties and thickness of thin films. In situ measurements can be made through the windows of a deposition chamber. A method for determining the optical properties of a film, that is sensitive only to the growing film and accommodates underlying interfacial layers, multiple unknown underlayers, and other unknown substrates was developed. This method is carried out by making an initial ellipsometry measurement well past the real interface and by defining a virtual interface in the vicinity of this measurement. ^
Resumo:
Favelas are Brazilian informal housing settlements that are areas of concentrated poverty. In Rio de Janeiro, favelas are perceived as areas of heightened criminal activity and violence, and residents experience discrimination, and little access to quality education and employment opportunities. In this context, hundreds of non-formal educational arts and leisure programs work to build the self-esteem and identity of youth in Rio's favelas as a way of preventing the youth from negative local influences. The Morrinho organization, located in the Pereira da Silva favela in Rio, uses art as a way for the local male youth to communicate their lived reality. This study used a visual critical ethnographic methodology to describe the way in which the Morrinho participants interpret living in a favela. Seventeen semi-structured interviews with young men aged 15 to 29, the feature-length documentary film on the organization, 206 researcher produced documentary style photographs of the Morrinho artwork, and the researcher's field notes were analyzed. Truth claims, ways of seeing as communicated through words and actions, were induced through a cyclical process of reconstructive horizon analysis that incorporated the societal context and critical theory. The participants communicated their concerns about life in a favela; however, they did not describe their societal positions in terms of complete marginalization. They named multiple benefits of living in Pereira da Silva, discussed positive and negative experiences in school, and described ways they circumvented discrimination. Morrinho as an organization was described as an enthralling game and a social project that benefited dozens of local youth. Character development was a valuable result of participation at Morrinho. The Morrinho artwork communicates a nuanced vision of both benevolent and violent social actors, and counters the overwhelmingly negative dominant characterization of Rio de Janeiro's favelas. This study has implications for an inclusive critical pedagogy and the use of art as a means to facilitate a transformative education. Further research is recommended to explore terminology used to refer to favelas, and perceptions that favela residents have of their experiences in public education.