5 resultados para Cristalino State Park

em Digital Commons at Florida International University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Analysis of siliceous microfossils of a 79 cm long peat sediment core from Highlands Hammock State Park, Florida, revealed distinct changes in the local hydrology during the past 2,500 years. The coring site is a seasonally inundated forest where water availability is directly influenced by precipitation. Diatoms, chrysophyte statospores, sponge remains and phytoliths were counted in 25 samples throughout the core. Based on the relative abundance of diatom species, the record was subdivided into four diatom assemblage zones, which mainly reflect the hydrological state of the study site. An age-depth relationship based on radiocarbon measurements of eight samples reveals a basal age of the core of approximately 2,500 cal. yrs. BP. Two significant changes of diatom assemblage composition were found that could be linked to both, natural and anthropogenic influences. At 700 cal. yrs. BP, the diatom record documents a shift from tychoplanktonicAulacoseira species to epiphytic Eunotia species, indicating a shortening of the hydroperiod, i.e. the time period during which a wetland is covered by water. This transition was interpreted as being triggered by natural climate change. In the middle of the twentieth century a second major turnover took place, at that time however, as a result of human impact on the park hydrology through the construction of dams and canals close to the study site.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

I investigated the phenology and breeding systems of two Florida endemic pawpaws, Asimina reticulata, widespread in peninsular Florida, and A. tetramera, a federally endangered species limited to two counties on the Atlantic Coastal Ridge. The purpose of this study was to determine if differences contribute to the rarity of Asimina tetramera compared with A. reticulata. The study was conducted in sand pine scrub sites with the largest populations of A. tetramera in the two counties. Flowering seasons differ for the two species. Both species are hermaphroditic and strongly protogynous. Pollination experiments show that neither species is autogamous and the primary breeding mechanism is outcrossing, although low levels of geitonogamous pollination occur in mature scrub habitats. High levels of inbreeding depression were noted in both species at both sites but inbreeding depression was relaxed the first year post-fire. Fruit set in mature habitats may be pollinator limited. ^ I studied insects associated with the flowers in sand pine scrub habitat in southeastern Florida from 1994–1996. The most commonly represented orders were Coleoptera (25 spp.), Lepidoptera. (3 spp.) and Hymenoptera. (3 spp.). All Coleoptera. were flower visitors; one species, Euphoria sepulchralis (Fabricius)(Scarabeaidae), visited flowers of the two Asimina species at both sites. Eurytides marcellus (Cramer) (Lepidoptera: Papilionidae) eggs and larvae were observed on both species of Asimina during each year of the study. ^ Resource management techniques were applied to a mature sand pine scrub community in Jonathan Dickinson State Park in southeastern Florida for the management of Asimina tetramera. Manipulations conducted in 1996 included combinations of fire and mechanical treatments. I measured effects of these treatments on flowering and fruit set on A. tetramera and found cutting and burning was most effective in increasing flowering, followed by burning. Mechanical cutting and mulching had no significant effect. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study investigates the use of larger foraminifera in determining the biostratigraphy of the Avon Park Formation and the Ocala Limestone in central Florida. Sedimentary rocks of the Avon Park Formation are the oldest exposed deposits in the state of Florida, and together with the Ocala Limestone comprise a part of the confining unit of the Floridan Aquifer, a major source of Florida's water supply. ^ Material from the ROMP 29A core collected by the U.S. Geological Survey was evaluated and compared to previous studies of the biostratigraphy of the formations. The larger foraminifera of the Avon Park Formation were examined in thin section, and those of the Ocala Limestone were free specimens. The larger foraminifera from both units were described and identified, and the biostratigraphy determined. The morphological features of the larger foraminifera of the Ocala Limestone were measured and analyzed at various depths within the ROMP 29A core.^ The Avon Park Formation contains predominantly the shallow-water, conical foraminifera Fallotella cookei, Fallotella floridana, Pseudochrysalidina floridana, Coleiconus christianaensis, Coleiconus sp. A, Coskinolina sp. A, Coskinolina sp. B, Fallotella sp. A, Fallotella sp. B, Fabularia vaughani and larger miliolids. ^ The Ocala Limestone contains a different, deeper water assemblage that included the larger foraminifera Heterostegina ocalana, Lepidocyclina ocalana varieties, Lepidocyclina chaperi, Lepidocyclina pustulosa, Nummulites willcoxi, Nummulites striatoreticulatus, Nummulites floridensis and Pseudophragmina spp. A, B, and C. The age of the Avon Park Formation was corroborated by the occurrence of the biomarker echinoid Neolaganum dalli as Eocene, and the Ocala Limestone also contained Eocene larger foraminifera with Eocene to possibly Oligocene calcareous nannofossils. The distribution of the larger foraminifera of the Avon Park Formation was correlated with the subtidal and peritidal zones of the continental shelf. Analyses of variance showed that the changes in measurements of the morphology in Heterostegina ocalana, Lepidocyclina spp. and Nummulites spp. were correlated with change in the depositional environments.^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tree islands in the Shark River Slough of the Everglades National Park (ENP), in the southern state of Florida in the United States, are part of a wetland system of densely vegetated ridges interspersed within relatively open sloughs. Human alteration of this system has had dramatic negative effects on the landscape of the region and restoration efforts will require adjusting the hydrology of the region to assure the preservation of these important ecologic features. The primary objectives of this study were to document the hydrology in the vicinity of tree islands in ENP by measuring velocities in time and space and by characterizing suspended sediments. The results of such measurements were interpreted with respect to factors that may limit tree island growth. The measurements were conducted in the vicinity of three tree islands known as Black Hammock (BH), Gumbo Limbo (GL), and an unnamed island that was named for this study as Satin Leaf (SL). Acoustical Doppler Velocity (ADV) meters were used for measuring the low velocities of the Everglades water flow. Properties of suspended sediments were characterized through measurements of particle size distribution, turbidity, concentration and particle density. Mean velocities observed at each of the tree islands varied from 0.9 to 1.4 cm/s. Slightly higher mean velocities were observed during the wet season (1.2–1.6 cm/s) versus the dry season (0.8–1.3 cm/s). Maximum velocities of more than 4 cm/s were measured in areas of Cladium jamaicense die-off and at the hardwood hammock (head) of the islands. At the island’s head, water is channelized around obstructions such as tree trunks in relatively rapid flow, which may limit the lateral extent of tree island growth. Channelization is facilitated by shade from the tree canopy, which limits the growth of underwater vegetation thereby minimizing the resistance to flow and limiting sediment deposition. Suspended sediment concentrations were low (0.5–1.5 mg/L) at all study sites and were primarily of organic origin. The mean particle size of the suspended sediments was 3 μm with a distribution that was exponential. Critical velocities needed to cause re-suspension of these particles were estimated to be above the actual velocities observed. Sediment transport within the water column appears to be at a near steady state during the conditions evaluated with low rates of sediment loss balanced by presumably the release of equivalent quantities of particles of organic origin. Existing hydrologic conditions do not appear to transport sufficient suspended sediments to result in the formation of tree islands. Of interest would be to collect hydrologic and sediment transport data during extreme hydrologic events to determine if enough sediment is transported under these conditions to promote sufficient sediment accumulations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Non-native fishes present a management challenge to maintaining Everglades National Park (ENP) in a natural state. We summarized data from long-term fish monitoring studies in ENP and reviewed the timing of introductions relative to water-management changes. Beginning in the early 1950s, management actions have added canals, altered wetland habitats by flooding and drainage, and changed inflows into ENP, particularly in the Taylor Slough/C-111 basin and Rocky Glades. The first non-native fishes likely entered ENP by the late 1960s, but species numbers increased sharply in the early 1980s when new water-management actions were implemented. After 1999, eight non-native species and three native species, all previously recorded outside of Park boundaries, were found for the first time in ENP. Several of these incursions occurred following structural and operational changes that redirected water deliveries to wetlands open to the eastern boundary canals. Once established, control non-native fishes in Everglades wetlands is difficult; therefore, preventing introductions is key to their management. Integrating actions that minimize the spread of non-native species into protected natural areas into the adaptive management process for planning, development, and operation of water-management features may help to achieve the full suite of objectives for Everglades restoration.