5 resultados para Cosmic-ray interactions with the Earth

em Digital Commons at Florida International University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A water quality model was developed to analyze the impact of hydrological events on mercury contamination of the Upper East Fork Poplar Creek, Tennessee. The model simulates surface and subsurface hydrology and transport (MIKE SHE and MIKE 11) and it is coupled with the reactive transport of sediments and mercury (ECOLAB). The model was used to simulate the distribution of mercury contamination in the water and sediments as a function of daily hydrological events. Results from the model show a high correlation between suspended solids and mercury in the water due to the affinity of mercury with suspended organics. The governing parameters for the distribution of total suspended solids and mercury contamination were the critical velocity of the stream for particle resuspension, the rates of resuspension and production of particles, settling velocity, soil-water partition coefficient, and desorption rate of mercury in the water. Flow and load duration curves at the watershed exit were used to calibrate the model and to determine the impact of hydrological events on the total maximum daily load at Station 17. The results confirmed the strong link between hydrology and mercury transport.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hydrology and a history of oligotrophy unite the massive landscape comprising freshwater marsh in Everglades National Park. With restoration of water flow to the Everglades, phosphorus (P) enrichment, both from agricultural and domestic sources, may increase nutrient load to the marsh ecosystem. Previous research of P enrichment of Everglades soil, periphyton, and macrophytes revealed each of these ecosystem components responds to increased P loads with increased production and nutrient content. Interactions among these ecosystem components and how P affects the magnitude and direction of interaction are poorly understood and are the focus of my research. Here I present results of a two-year, two-factor experiment of P enrichment and manipulation in Everglades National Park. I quantified biomass, nutrient content, and production for periphyton and macrophyes and found macrophyte removal drives change in nutrient content, biomass, and production of periphyton. Periphyton removal did not appear to control macrophyte dynamics. Soil chemical and physical characteristics were explained primarily by site differences but there was an enrichment effect of soil porewater nitrite + nitrate, nitrite, and soluble reactive phosphorus. Flocculent materials production and depth were significantly affected by macrophyte removal where depth and production were significantly greater with the no macrophyte treatment. The dominant macrophyte of the marsh, Eleocharis cellulosa, increased more in the unenriched marsh than in the enriched marsh. The combination of these findings suggests that dynamics in floc and periphyton are controlled primarily by the presence of periphyton and that this relationship is significantly affected by low-level P enrichment. These results may be valuable in their application to both managers and policy makers who are involved in the Everglades restoration process. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A brackish water ecotone of coastal bays and lakes, mangrove forests, salt marshes, tidal creeks, and upland hammocks separates Florida Bay, Biscayne Bay, and the Gulf of Mexico from the freshwater Everglades. The Everglades mangrove estuaries are characterized by salinity gradients that vary spatially with topography and vary seasonally and inter-annually with rainfall, tide, and freshwater flow from the Everglades. Because of their location at the lower end of the Everglades drainage basin, Everglades mangrove estuaries have been affected by upstream water management practices that have altered the freshwater heads and flows and that affect salinity gradients. Additionally, interannual variation in precipitation patterns, particularly those caused to El Nin˜o events, control freshwater inputs and salinity dynamics in these estuaries. Two major external drivers on this system are water management activities and global climate change. These drivers lead to two major ecosystem stressors: reduced freshwater flow volume and duration, and sea-level rise. Major ecological attributes include mangrove forest production, soil accretion, and resilience; coastal lake submerged aquatic vegetation; resident mangrove fish populations; wood stork (Mycteria americana) and roseate spoonbill (Platelea ajaja) nesting colonies; and estuarine crocodilian populations. Causal linkages between stressors and attributes include coastal transgression, hydroperiods, salinity gradients, and the ‘‘white zone’’ freshwater/estuarine interface. The functional estuary and its ecological attributes, as influenced by sea level and freshwater flow, must be viewed as spatially dynamic, with a possible near-term balancing of transgression but ultimately a long-term continuation of inland movement. Regardless of the spatio-temporal timing of this transgression, a salinity gradient supportive of ecologically functional Everglades mangrove estuaries will be required to maintain the integrity of the South Florida ecosystem.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1. The roles of nutrients, disturbance and predation in regulating consumer densities have long been of interest, but their indirect effects have rarely been quantified in wetland ecosystems. The Florida Everglades contains gradients of hydrological disturbance (marsh drying) and nutrient enrichment (phosphorus), often correlated with densities of macroinvertebrate infauna (macroinvertebrates inhabiting periphyton), small fish and larger invertebrates, such as snails, grass shrimp, insects and crayfish. However, most causal relationships have yet to be quantified. 2.  We sampled periphyton (content and community structure) and consumer (small omnivores, carnivores and herbivores, and infaunal macroinvertebrates inhabiting periphyton) density at 28 sites spanning a range of hydrological and nutrient conditions and compared our data to seven a priori structural equation models. 3.  The best model included bottom-up and top-down effects among trophic groups and supported top-down control of infauna by omnivores and predators that cascaded to periphyton biomass. The next best model included bottom-up paths only and allowed direct effects of periphyton on omnivore density. Both models suggested a positive relationship between small herbivores and small omnivores, indicating that predation was unable to limit herbivore numbers. Total effects of time following flooding were negative for all three consumer groups even when both preferred models suggested positive direct effects for some groups. Total effects of nutrient levels (phosphorus) were positive for consumers and generally larger than those of hydrological disturbance and were mediated by changes in periphyton content. 4.  Our findings provide quantitative support for indirect effects of nutrient enrichment on consumers, and the importance of both algal community structure and periphyton biomass to Everglades food webs. Evidence for top-down control of infauna by omnivores was noted, though without substantially greater support than a competing bottom-up-only model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Microelectronic systems are multi-material, multi-layer structures, fabricated and exposed to environmental stresses over a wide range of temperatures. Thermal and residual stresses created by thermal mismatches in films and interconnections are a major cause of failure in microelectronic devices. Due to new device materials, increasing die size and the introduction of new materials for enhanced thermal management, differences in thermal expansions of various packaging materials have become exceedingly important and can no longer be neglected. X-ray diffraction is an analytical method using a monochromatic characteristic X-ray beam to characterize the crystal structure of various materials, by measuring the distances between planes in atomic crystalline lattice structures. As a material is strained, this interplanar spacing is correspondingly altered, and this microscopic strain is used to determine the macroscopic strain. This thesis investigates and describes the theory and implementation of X-ray diffraction in the measurement of residual thermal strains. The design of a computer controlled stress attachment stage fully compatible with an Anton Paar heat stage will be detailed. The stress determined by the diffraction method will be compared with bimetallic strip theory and finite element models.